giải phương trình \(x+\sqrt{50-x^2}+x\sqrt{50-x^2}=15\)15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A^2=\left(x-\sqrt{50}+x-\sqrt{50}-2.\sqrt{x^2-50}\right).\left(x+\sqrt{x^2-50}\right)\)
\(=\left(2x-2.\sqrt{x^2-50}\right).\left(x+\sqrt{x^2-50}\right)\)
\(=2.\left(x-\sqrt{x^2-50}\right).\left(x+\sqrt{x^2-50}\right)\)
\(=2.\left(x^2-x^2+50\right)\)
\(=100\)
Ta có \(\sqrt{x-\sqrt{50}}< \sqrt{x+\sqrt{50}}\)
\(\Rightarrow\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}< 0\)
mà \(\sqrt{x+\sqrt{x^2-50}}\ge0\)
Nên \(A\le0\)
Có \(A^2=100\)
Nên A=-10
\(\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\sqrt{x+\sqrt{x^2-50}}\)
\(=\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right).\frac{1}{\sqrt{2}}.\sqrt{2x+2\sqrt{x-\sqrt{50}}.\sqrt{x+\sqrt{50}}}\)
\(=\frac{1}{\sqrt{2}}.\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\sqrt{\left(\sqrt{x-\sqrt{50}}+\sqrt{x+\sqrt{50}}\right)^2}\)
\(=\frac{1}{\sqrt{2}}.\left(\sqrt{x-\sqrt{50}}-\sqrt{x+\sqrt{50}}\right)\left(\sqrt{x-\sqrt{50}}+\sqrt{x+\sqrt{50}}\right)\)
\(=\frac{1}{\sqrt{2}}.\left(x-\sqrt{50}-x-\sqrt{50}\right)=\frac{-2\sqrt{50}}{\sqrt{2}}=-10\)
a.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$
$\Leftrightarrow \sqrt{2x}=3$
$\Leftrightarrow 2x=9$
$\Leftrightarrow x=\frac{9}{2}$ (tm)
b.
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$
$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$
$\Leftrightarrow 3\sqrt{x+2}=15$
$\Leftrightarrow \sqrt{x+2}=5$
$\Leftrightarrow x+2=25$
$\Leftrightarrow x=23$ (tm)
c.
$\sqrt{(x-2)^2}=12$
$\Leftrightarrow |x-2|=12$
$\Leftrightarrow x-2=12$ hoặc $x-2=-12$
$\Leftrightarrow x=14$ hoặc $x=-10$
e.
PT $\Leftrightarrow |2x-1|-x=3$
Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
a: =>\(x\cdot\left(\sqrt{3}-1\right)=16\)
=>\(x=\dfrac{16}{\sqrt{3}-1}=8\left(\sqrt{3}+1\right)\)
b: =>(x-căn 15)^2=0
=>x-căn 15=0
=>x=căn 15
1.
\(\sqrt{50}-3\sqrt{8}+\sqrt{32}=5\sqrt{2}-6\sqrt{2}+4\sqrt{2}=3\sqrt{2}\)
2.
a, ĐK: \(x\in R\)
\(pt\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\)
\(\Leftrightarrow\left|x-2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
b, ĐK: \(x\ge3\)
\(pt\Leftrightarrow\sqrt{x-3}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(l\right)\end{matrix}\right.\)
\(3x-2=\sqrt[]{x^2+15}-\sqrt[]{x^2+8}=\dfrac{7}{\sqrt[]{x^2+15}+\sqrt[]{x^2+8}}>0\)
\(\Rightarrow x>\dfrac{2}{3}\)
\(\sqrt[]{x^2+15}-4=3x-3+\sqrt[]{x^2+8}-3\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt[]{x^2+15}+4}=3\left(x-1\right)+\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt[]{x^2+8}+3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\dfrac{x+1}{\sqrt[]{x^2+15}+4}=3+\dfrac{x+1}{\sqrt[]{x^2+8}+3}\left(1\right)\end{matrix}\right.\)
Do \(x>\dfrac{2}{3}\Rightarrow x+1>0\Rightarrow\dfrac{x+1}{\sqrt[]{x^2+15}+4}< \dfrac{x+1}{\sqrt[]{x^2+8}+3}\)
\(\Rightarrow\) (1) vô nghiệm hay pt có nghiệm duy nhất \(x=1\)
\(1,PT\Leftrightarrow2x-1=5\Leftrightarrow x=3\\ 2,\Leftrightarrow x-5=9\Leftrightarrow x=14\\ 3,ĐK:x\ge1\\ PT\Leftrightarrow3\sqrt{x-1}=21\Leftrightarrow\sqrt{x-1}=7\Leftrightarrow x=50\left(tm\right)\\ 4,\Leftrightarrow x=\dfrac{\sqrt{50}}{\sqrt{2}}=\dfrac{5\sqrt{2}}{\sqrt{2}}=5\)