K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

Tìm trước khi hỏi nhé bạn!

Câu hỏi của Vy Trương Thị Mai - Toán lớp 7 - Học toán với OnlineMath

23 tháng 10 2016

bài này dễ

  3n+3+3n+1+2n+3+2n+2

=3n.33+3n.3+2n.23+2n.22

=3n.(33+3)+2n.(23+22)

=3n.(27+3)+2n.(8+4)

=3n.30+2n.12

vì 3n.30 chia hết cho 6

   2n.12 chia hết cho 6

=> 3n+3+3n+1+2n+3+2n+2 chia hết cho 6

a: TH1: n=2k

A=(n+2)(n+5)

=(2k+2)(2k+5)

=2(k+1)(2k+5)\(⋮\)2(1)

TH2: n=2k+1

\(A=\left(n+2\right)\left(n+5\right)\)

\(=\left(2k+1+2\right)\left(2k+1+5\right)\)

\(=\left(2k+3\right)\left(2k+6\right)\)

\(=2\left(k+3\right)\left(2k+3\right)⋮2\)(2)

Từ (1),(2) suy ra \(A⋮2\)

b: TH1: n=3k

\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)

\(=\left(2\cdot3k+3\right)\left(3k+6\right)\left(5\cdot3k+2\right)\)

\(=3\left(k+2\right)\left(6k+3\right)\left(15k+2\right)⋮3\left(3\right)\)

TH2: n=3k+1

\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)

\(=\left[2\left(3k+1\right)+3\right]\left[3k+1+6\right]\left[5\left(3k+1\right)+2\right]\)

\(=\left(6k+2+3\right)\left(3k+7\right)\left(15k+5+2\right)\)

=(6k+5)(3k+7)(15k+7)

=>B không chia hết cho 3

Vậy: B không chia hết cho 3 với mọi n

20 tháng 10 2020

Cho xin phép sửa đề lại :

CMR : \(3^{n+3}+2^{n+1}+3^{n+1}+2^{n+2}⋮6\)

Ta có : \(3^{n+3}+2^{n+1}+3^{n+1}+2^{n+2}=3^n\cdot3^3+2^n\cdot2+3^n\cdot3+2^n\cdot2^2\)

\(=3^n\cdot27+2^n\cdot2+3^n\cdot3+2^n\cdot4\)

\(=3^n\left(27+3\right)+2^n\left(2+4\right)\)

\(=3^n\cdot30+2^n\cdot6=6\left(5\cdot3^n+2^n\right)⋮6\)(đpcm)

Còn nếu có hai phần 2n+2 thì nó chia hết cho 2 chứ không phải chia hết cho 6

26 tháng 7 2023

\(A=3^{n+2}-2^{n+3}+3^n-2^{n+2}\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+3}+2^{n+2}\right)\)

\(=3^n.\left(3^2+1\right)-2^{n+2}.\left(2+1\right)\)

\(=3^n.10-2^{n+2}.3\)

Ta có:

\(3^n⋮3\) và \(10⋮2\) \(\Rightarrow\left(3^n.10\right)⋮6\)   (1)

\(2^{n+2}⋮2\) và \(3⋮3\Rightarrow\left(2^{n+2}.3\right)⋮6\)   (2)

Từ (1) và (2) \(\Rightarrow\left(3^n.10-2^{n+2}.3\right)⋮6\)

Vậy \(A⋮6\)

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

17 tháng 8 2015

=3n.(33+3)+2n.(23+22)

=3n.30+2n.12

=6.(3n.5+2n.2) chia het cho 6 voi moi n

=>dpcm

10 tháng 8 2018

Ta có :

3n + 2 + 3n + 1 + 2n + 3 + 2n + 2

= 3n . 32 + 3n . 3 + 2n . 23 + 2n . 22

= 3n (32 + 3) + 2n (23 + 22)

= 3n . 12 + 2n . 12

= 12 (3n . 2n)

Mà 12 ⋮ 6 ⇒ đpcm