K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

Đề là ntn đúng k e?

\(n+1=6\Rightarrow n=6-1=5\)

15 tháng 10 2021

đúng ạ

AH
Akai Haruma
Giáo viên
17 tháng 12 2023

Lời giải:

$n^3+3n+1\vdots n+1$

$\Rightarrow (n^3+1)+3n\vdots n+1$

$\Rightarrow (n+1)(n^2-n+1)+3(n+1)-3\vdots n+1$

$\Rightarrow (n+1)(n^2-n+4)-3\vdots n+1$

$\Rightarrow 3\vdots n+1$

$\Rightarrow n+1\in \left\{1; 3\right\}$ (do $n+1$ là stn) 

$\Rightarrow n\in \left\{0; 2\right\}$

19 tháng 12 2019

a) Ta có: \(n+1\inƯ\left(5\right)\)

\(\Rightarrow n+1\in\left\{1;5\right\}\)

\(\Rightarrow n\in\left\{0;4\right\}\)

_Học tốt_

19 tháng 12 2019

2n+ 5 là số lẻ mà bọi của 4 là số chẵn 

vậy ước của 2n + 1 và 2n + 5 không là 4 với mọi n thuộc N

học tốt

22 tháng 7 2022

không có cây trả lời

 

5 tháng 8 2023

\(\dfrac{n+5}{n+1}=\dfrac{n+4+1}{n+1}\\=\dfrac{n+1}{n+1}+\dfrac{4}{n+1}\\ =1+\dfrac{4}{n+1}\)

Để `n+5 vdots n+1` thì 

`4 vdots n+1`

`=>n+1 in Ư(5)={+-1;+-5}`

`=> n in {0;-2;4;-6}`

5 tháng 8 2023

em cảm ơn ạ

Ta có: 3n+5⋮n+1.

(3n+3)+2⋮n+1.

3(n+1)+2⋮n+1.

mà 3(n+1)⋮n+1

⇒2⋮n+1⇒n+1∈U(2)={±1;±2}.

Ta lập bảng xét giá trị 

n+1-11-22
n-20-31
6 tháng 11 2019

Vì 3n-5:hết cho n+1mà n+1 : hết cho n+1 =≫3.(n+1)                                                                                                                                                                         

TC : 3n-5 -[3.(n+1)]:hết cho n+1

3n-5 -(3n+3) :hết cho n+1

3n- 5 -  3n-3:hết cho n+1

2:hết cho n+1  =≫n+1 thuôc Ư(2)={1;2}

thay n+1lần lượt= 1;2 là ban sẽ ra

9 tháng 5 2018

 n = 13 - 6 = 7

thử lại 7 + 13/ 7 + 6 = 20/13(là phân số tố giản)

ngoài ra n còn nhìu số nha

6 tháng 11 2019

3n+1 chia hết 11-n

<=> 3n+1+(11-n).3 chia hết 11-n (11-n chia hết cho 11-n)

<=>12 chia hết 11-n

=> 11-n thuộc tập hợp Ư(12) = {1; 2; 3; 4; 6 ; 12}

Mà 11-n <12 =)) 11-n thuộc tập hợp {1; 2; 3; 4; 6}

Vậy n thuộc tập hợp {5; 7; 8; 9; 10}

Mình đánh máy nên ko dùng kí hiệu đc, mong bạn thông cảm giúp mình

6 tháng 11 2019

cảm ơn nha

22 tháng 1 2022

- Chắc là gọi thầy Nguyễn Việt Lâm thôi :)

NV
22 tháng 1 2022

1.

\(2n+1\) luôn lẻ \(\Rightarrow2n+1=\left(2a+1\right)^2=4a^2+4a+1\Rightarrow n=2a\left(a+1\right)\)

\(\Rightarrow n\) chẵn \(\Rightarrow n+1\) lẻ \(\Rightarrow\) là số chính phương lẻ

\(\Rightarrow n+1=\left(2b+1\right)^2=4b^2+4b+1\)

\(\Rightarrow n=4b\left(b+1\right)\)

Mà \(b\left(b+1\right)\) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\) luôn chẵn

\(\Rightarrow4b\left(b+1\right)⋮8\Rightarrow n⋮8\)

Mặt khác số chính phương chia 3 chỉ có các số dư 0 và 1

Mà \(\left(n+1\right)+\left(2n+1\right)=3n+2\) chia 3 dư 2

\(\Rightarrow n+1\) và \(2n+1\) đều chia 3 dư 1

\(\Rightarrow n⋮3\)

\(\Rightarrow n⋮24\) do 3 và 8 nguyên tố cùng nhau