tìm x biết:
a)3x chia hết cho x-1
b)2x chia hết cho x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
a: 3x+2 chia hết cho x-1
=>3x-3+5 chia hết cho x-1
=>5 chia hết cho x-1
=>x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;6;-4}
b: 3x+24 chia hết cho x-4
=>3x-12+36 chia hết cho x-4
=>36 chia hết cho x-4
=>x-4 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36}
=>x thuộc {5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32}
c: x^2+5 chia hết cho x+1
=>x^2-1+6 chia hết cho x+1
=>x+1 thuộc {1;-1;2;-2;3;-3;6;-6}
=>x thuộc {0;-2;1;-3;2;-4;5;-7}
d: x^2-5x+1 chia hết cho x-5
=>1 chia hết cho x-5
=>x-5 thuộc {1;-1}
=>x thuộc {6;4}
a: \(\Leftrightarrow x+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
hay \(x\in\left\{-2;-4;-1;-5;0;-6;1;-7;3;-9;9;-15\right\}\)
Lời giải:
Cần bổ sung điều kiện $x$ là số nguyên.
a.
$2x+5\vdots x+1$
$\Rightarrow 2(x+1)+3\vdots x+1$
$\Rightarrow 3\vdots x+1$
$\Rightarrow x+1\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow x\in\left\{0; -2; 2; -4\right\}$
b.
$-x-5\vdots -x-1$
$\Rightarrow (-x-1)-4\vdots -x-1$
$\Rightarrow 4\vdots -x-1$
$\Rightarrow -x-1\in\left\{\pm 1; \pm 2; \pm 4\right\}$
$\Rightarrow x\in \left\{0; -2; 1; -3; 3; -5\right\}$
a: =>2x+2+3 chia hêt cho x+1
=>\(x+1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{0;-2;2;-4\right\}\)
b: =>x+5 chia hết cho x+1
=>\(x+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{0;-2;1;-3;3;-5\right\}\)
a: =>3x-3+5 chia hết cho x-1
=>x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;6;-4}
b: =>x(x+2)-7 chia hết cho x+2
=>x+2 thuộc {1;-1;7;-7}
=>x thuộc {-1;-3;5;-9}
a: 3x^3+2x^2-7x+a chia hêt cho 3x-1
=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1
=>a-2=0
=>a=2
c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4
=>3a+19=4
=>3a=-15
=>a=-5
d: 2x^3-x^2+ax+b chiahêt cho x^2-1
=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1
=>a+2=0 và b-1=0
=>a=-2 và b=1
a, x+3 chia hết cho x-1
Ta có: x+3=(x+1)+2
=> 2 chia hết cho x+1
=>x+1 thuộc Ư(2)= {1, -1, 2, -2}
=> x thuộc {0,-2, 1, -3}
b.
b,3x chia hết cho x-1
c,2-x chia hết cho x+1
Ta có:
\(\dfrac{x+3}{x-1}=\dfrac{x-1+4}{x-1}=1+\dfrac{4}{x-1}\)
Để (x + 3) \(⋮\left(x-1\right)\) thì 4 \(⋮\left(x-1\right)\)
\(\Rightarrow\) x - 1 = 1; x - 1 = -1; x - 1 = 2; x - 1 = -2; x - 1 = 4; x - 1 = -4
*) x - 1 = 1
x = 2
*) x - 1 = -1
x = 0
*) x - 1 = 2
x = 3
*) x - 1 = -2
x = -1
*) x - 1 = 4
x = 5
*) x - 1 = -4
x = -3
Vậy x = 5; x = 3; x = 2; x = 0; x = -1; x = -3
a: =>3x-9+26 chia hết cho x-3
=>\(x-3\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\)
=>\(x\in\left\{4;2;5;1;16;-10;29;-23\right\}\)
b: =>6x+38 chia hết cho 2x-3
=>6x-9+47 chia hết cho 2x-3
=>\(2x-3\in\left\{1;-1;47;-47\right\}\)
=>\(x\in\left\{2;1;25;-22\right\}\)
\(a,\Rightarrow x\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ b,\Rightarrow2\left(x+1\right)-1⋮x+1\\ \Rightarrow x+1\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Rightarrow x\in\left\{-2;0\right\}\)
a
\(3x⋮x-1\)
\(\Leftrightarrow3\left(x-1\right)+3⋮x-1\)
\(\Leftrightarrow3⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;3;-1;-3\right\}\)
\(\Leftrightarrow x\in\left\{2;4;-2;0\right\}\)
b
\(2x⋮x+5\)
\(\Leftrightarrow2\left(x+5\right)-10⋮x+5\)
\(\Leftrightarrow10⋮x+5\)
\(\Leftrightarrow x+5\in\left\{1;5;-1;-5;-2;2;10;-10\right\}\)
\(\Leftrightarrow x\in\left\{-4;0;-6;-10;-7;-3;5;-15\right\}\)