K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2022

\(n^2+4n=n\left(n+4\right)\)

Để n(n+4) là số nguyên tố thì (n+4;n): (4;1);(1;4);(-1;-4);(-4;-1)

Nếu n+4 = 4; n=1 => n =0 hoặc n=1

Nếu n+4=1; n=4 => n=-3 hoặc n=4

Nếu n+4 = -1;n=-4 => n = 3 hoặc n=-4

Nếu n+4= -4; n= -1 => n=-8; n=-1

DD
26 tháng 12 2022

\(n^2+4n=n\left(n+4\right)\)

Để \(n^2+4n\) là số nguyên tố thì \(\left[{}\begin{matrix}n=1\\n+4=1\end{matrix}\right.\).

Với \(n=1\)\(n^2+4n=5\) (thỏa mãn). 

Với \(n+4=1\Leftrightarrow n=-3\) (không thỏa mãn).

15 tháng 11 2021

a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)

b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)

\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)

Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)

c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)

\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)

d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)

\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)

1 tháng 11 2024

Bạn này làm sai r

5 tháng 1 2024

Tìm \(x\) thế \(x\) nào ở đâu trong bài toán vậy em?

12 tháng 1 2024

em nhìn nhầm n ạ

 

11 tháng 6 2021

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ; 

AH
Akai Haruma
Giáo viên
10 tháng 9 2023

Lời giải:
Ta thấy với stn $n$ thì $6n+2023$ là số lẻ, còn $4n+2$ là số chẵn.

Một số lẻ thì không thể chia hết cho 1 số chẵn nên không tồn tại số $n$ thích hợp.

DD
23 tháng 7 2021

Ta có: 

\(n^3-4n^2-2n+15=n^3-3n^2-n^2+3n-5n+15\)

\(=\left(n-3\right)\left(n^2-n-5\right)\)

Để \(n^3-4n^2-2n+15\)là số nguyên tố thì 

\(\orbr{\begin{cases}n-3=1\\n^2-n-5=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=4\\n=3\end{cases}}\)(vì \(n\)là số tự nhiên) 

Với \(n=4\)\(n^3-4n^2-2n+15=7\)là số nguyên tố, thỏa mãn. 

Với \(n=3\)\(n^3-4n^2-2n+15=0\)không là số nguyên tố, loại. 

a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-2\right\}\)