Tìm x,y biết
0,x(y)- 0,y(x)= 8*0,0(1) và x+y = 9
Mn ui giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A=(-x)^3+3*(-x)^2*2+3*(-x)*2^2+2^3=(-x+2)^3
=(28+2)^3=30^3=27000
b: \(C=\left(x+2y-2\right)^3=\left(20+2\cdot9-2\right)^3\)
=36^3
c: 11^3-1
=(11-1)(11^2+11+1)
=10*(121+12)
=1330
d: x^3-y^3=(x-y)^3+3xy(x-y)
=6^3+3*6*9
=216+162
=378
ta có : 0,x(y)-0,y(x)=8*0,0(1)=0,x+y*1/90-0,y-x*1/90=8*1/90
=>x/10+y/90-y/10-x/90=8/90
=>8x/90-8y/90=8/90
=>8x-8y=8
Rút gọn 2 vế cho 8 ta được : x-y=1
Mà x+y=9
=>x=(9+1):2=5
=>y=9-5=4
Ta có: \(P=\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{2xy}{x-y}\)
\(=x-y+\frac{16}{x-y}\ge2.4=8\)
Đặt \(t=x^2+y^2\) thì ta có :
\(P^2=\frac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}=\frac{t^2}{t-16}=\frac{1}{\frac{t-16}{t^2}}=\frac{1}{-\frac{16}{t^2}+\frac{1}{t}}=\frac{1}{-16\left(\frac{1}{t}-\frac{1}{32}\right)^2+\frac{1}{64}}\ge\frac{1}{\frac{1}{64}}=64\)
\(\Rightarrow P\ge8\). Đẳng thức xảy ra khi \(\hept{\begin{cases}x^2+y^2=32\\xy=8\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2+2\sqrt{2}\\y=-2+2\sqrt{3}\end{cases}}\)
Trả lời :
Mk giúp bn câu a ) thôi mà sai thì thôi nhé :)))
a, \(\left|x\right|+\left|y\right|=0\)
\(\Leftrightarrow x=0;y=0\) \(\Rightarrow\left|x\right|+\left|y\right|=0\)
Vậy x = 0 ; y = 0
_Học tốt
câu a,b,c dạng tương tự nhau nha nên mình làm câu a
a)\(\left|x\right|+\left|y\right|=0\left(1\right)\)
Ta có: \(\hept{\begin{cases}\left|x\right|\ge0;\forall x,y\\\left|y\right|\ge0;\forall x,y\end{cases}\Rightarrow}\left|x\right|+\left|y\right|\ge0;\forall x,y\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\hept{\begin{cases}\left|x\right|=0\\\left|y\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
Vậy \(\left(x,y\right)=\left(0;0\right)\)
d) \(\left|x^2+1\right|=12\left(1\right)\)
Ta thấy \(x^2\ge0;\forall x\)
\(\Rightarrow x^2+1\ge1>0;\forall x\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x^2+1=12\)
\(\Leftrightarrow x^2=11\)
\(\Leftrightarrow x=\pm\sqrt{11}\)
Vậy \(x=\pm\sqrt{11}\)
câu 1
x^2 -5x +y^2+xy -4y +2014
=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010
=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007
=(y+1/2x-2)^2 +3/4(x-2)^2 +2007
GTNN là 2007<=> x=2 và y=1
ta có 0,x(y) = 0,x + 0,0(y) = x/10 + y*0,0(1) = x/10 + y/90
tuong tự thì 0,y(x) = y/10 + x/90 và 8*0,0(1) = 8/90
=> x/10+y/90-y/10-x/90 = 8/90 => 4x/45 - 4y/45 = 8/90 => x-y=1; mà x+y =9
=> x=5;y=4