K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2020

\(\hept{\begin{cases}x-my=2\\mx-4y=m-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=my+2\\m\left(my+2\right)-4y=m-2\left(1\right)\end{cases}}\)

Từ ( 1 ) suy ra : \(\left(m^2-4\right)y=-\left(m+2\right)\)

Nếu m \(\ne\pm2\)thì \(y=\frac{1}{2-m};x=\frac{4-m}{2-m}\)

Nếu m = 2 thì 0y = -4 ( vô nghiệm ). do đó hệ vô nghiệm

nếu m = -2 thì 0y = 0, hệ đã cho có vô số nghiệm 

30 tháng 5 2016

Cô làm câu b thôi nhé :)

Ta có hệ \(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\left(1\right)\\x=4-my\end{cases}}\)

Với \(4-m^2=0\Leftrightarrow m=2\) hoặc \(m=-2\)

Xét m =2, phương trình (1) tương đương 0.x = 0. Vậy hệ phương trình có vô số nghiệm dạng \(\left(4-2t;t\right)\)

Xét m = -2, phương trình (1) tương đương 0.x = 20. Vậy hệ phương trình vô nghiệm.

Với \(4-m^2\ne0\Leftrightarrow m\ne2\) và \(m\ne-2\), phương trình (1) tương đương \(y=\frac{10-5m}{4-m^2}=\frac{5}{2+m}\)

Từ đó : \(x=\frac{8-m}{2+m}\)

Kết luận: 

+ m = 2, hệ phương trình có vô số nghiệm dạng \(\left(4-2t;t\right)\)

+ m = - 2, hệ phương trình vô nghiệm.

\(m\ne2;m\ne-2\) hệ có 1 nghiệm duy nhất \(\hept{\begin{cases}x=\frac{8-m}{2+m}\\y=\frac{5}{2+m}\end{cases}}\)

Chúc em học tập tốt :)

9 tháng 12 2021

undefined
hehe
Hỏi từ lâu nhưng bây giờ em trả lời lại cho vui

\(\left\{{}\begin{matrix}4x-my=m-4\\\left(2m+6\right)x+y=2m+1\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{4}{2m+6}< >\dfrac{-m}{1}\)

=>\(-2m^2-6m< >4\)

=>\(-2m^2-6m-4\ne0\)

=>\(-2\left(m^2+3m+2\right)\ne0\)

=>\(m^2+3m+2\ne0\)

=>\(\left(m+1\right)\left(m+2\right)\ne0\)

=>\(\left\{{}\begin{matrix}m+1\ne0\\m+2\ne0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne-1\\m\ne-2\end{matrix}\right.\)

=>\(m\notin\left\{-1;-2\right\}\)

Để hệ phương trình vô nghiệm thì \(\dfrac{4}{2m+6}=\dfrac{-m}{1}\ne\dfrac{m-4}{2m+1}\)

=>\(\left\{{}\begin{matrix}\dfrac{4}{2m+6}=-m\\\dfrac{-m}{1}\ne\dfrac{m-4}{2m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2m^2-6m=4\\-2m^2-m\ne m-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2m^2-6m-4=0\\-2m^2-2m+4\ne0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2+3m+2=0\\m^2+m-2\ne0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m+1\right)\left(m+2\right)=0\\\left(m+2\right)\left(m-1\right)\ne0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m+1=0\\m+2=0\end{matrix}\right.\\\left\{{}\begin{matrix}m+2\ne0\\m-1\ne0\end{matrix}\right.\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{-1;-2\right\}\\m\notin\left\{-2;1\right\}\end{matrix}\right.\Leftrightarrow m=-1\)

Để hệ phương trình có vô số nghiệm thì \(\dfrac{4}{2m+6}=\dfrac{-m}{1}=\dfrac{m-4}{2m+1}\)

=>\(\left\{{}\begin{matrix}\dfrac{4}{2m+6}=-m\\\dfrac{m-4}{2m+1}=-m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-m=\dfrac{2}{m+3}\\m-4=-m\left(2m+1\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-m^2-3m=2\\m-4+2m^2+m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+3m=-2\\2m^2+2m-4=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2+3m+2=0\\m^2+m-2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m+2\right)\left(m+1\right)=0\\\left(m+2\right)\left(m-1\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{-2;-1\right\}\\m\in\left\{-2;1\right\}\end{matrix}\right.\)

=>m=-2

13 tháng 5 2020

\(m^2x=m\cdot\left(x+2\right)-2\)

\(\Leftrightarrow x\left(m^2-m\right)-2m+2=0\)

*Nếu m=1 <=> m^2 - m = 0 \(\Leftrightarrow-2.1+2=0\left(Đ\right)\)

=> Với m =1 thì pt thỏa mãn với mọi x thuộc R

*Nếu \(m\ne1\Leftrightarrow x=\frac{2m-2}{m^2-m}\)

=> Với \(m\ne1\text{ thì }x=\frac{2m-2}{m^2-m}\)

Vậy ....

2mx+y=2 và 8x+my=m+2

=>y=2-2mx và 8x+m(2-2mx)=m+2

=>\(\left\{{}\begin{matrix}8x+2m-2m^2x-m-2=0\\y=-2mx+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(-2m^2+8\right)=-m+2\\y=-2mx+2\end{matrix}\right.\)

=>2(m-2)(m+2)x=m-2 và y=-2mx+2

Nếu m=2 thì hệpt có vô số nghiệm

Nếu m=-2 thìhệ pt vn

Nếu m<>2; m<>-2 thì hệ phương trình có nghiệm duy nhất là:

\(\left\{{}\begin{matrix}x=\dfrac{1}{2\left(m+2\right)}\\y=-2m\cdot\dfrac{1}{2\left(m+2\right)}+2=-\dfrac{m}{m+2}+2=\dfrac{-m+2m+4}{m+2}=\dfrac{m+4}{m+2}\end{matrix}\right.\)

8 tháng 2 2020

a) Xét hpt : \(\hept{\begin{cases}x+my=1\\mx-3my=2m+3\end{cases}}\)

Tại m = -3 ta có :

\(\hept{\begin{cases}x-3y=1\\-3x+3.3y=-2.3+3\end{cases}}\)

<=> \(\hept{\begin{cases}x-3y=1\\-3x+9y=-3\end{cases}}\)

<=> \(\hept{\begin{cases}x-3y=1\\-x+3y=-1\end{cases}}\)

<=>\(\hept{\begin{cases}x-3y=1\\x-3y=1\end{cases}}\)

Do đó hpt có vô số nghiệm với m = -3

8 tháng 2 2020

b) Xét hpt : \(\hept{\begin{cases}x+my=1\\mx-3ym=2m+3\end{cases}}\)

<=> \(\hept{\begin{cases}x=1-my\\m\left(1-my\right)-3ym=2m+3\end{cases}}\)

<=> \(\hept{\begin{cases}x=1-my\\m-m^2y-3my=2m+3\end{cases}}\)

<=> \(\hept{\begin{cases}x=1-my\\\left(m^2+3m\right)y=m-2m-3\end{cases}}\)

<=> \(\hept{\begin{cases}x=1-my\\\left(m^2+3m\right)y=-m-3\end{cases}}\)

Ta có : Hpt có nghiệm duy nhất

<=> Pt trên có nghiệm duy nhất

<=> m2 + 3m khác 0

<=> m(m + 3) khác 0

<=> m khác 0 và m khác -3

=> Ta có :

\(\hept{\begin{cases}x=1-my\\m\left(m+3\right)y=-3-m\end{cases}}\)

<=> \(\hept{\begin{cases}y=\frac{-\left(m+3\right)}{m\left(m+3\right)}\\x=1-my\end{cases}}\)

<=> \(\hept{\begin{cases}x=2\\y=\frac{-1}{m}\end{cases}}\)

<=> \(\hept{\begin{cases}m\left(m+3\right)=0\\-\left(m+3\right)=0\end{cases}}\)

<=>\(\hept{\begin{cases}m=0orm=-3\\m=-3\end{cases}}\)

<=> m = -3

<=> m(m+3) = 0 và m(m + 3) khác 0

<=> m = 0 haowcj m = -3 và m khác -3

<=> m = 0

Vậy