Chứng minh : Không tồn tại số nguyên tố p sao cho: \(3^p+19\left(p-1\right)\) là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
Giả sử bốn số nguyên tố đó là \(p_1,p_2,p_3,p_4\).
Khi đó các số đã cho đều viết được dưới dạng \(p_1^{a_1}p_2^{a_2}p_3^{a_3}p_4^{a_4}\) với \(a_1,a_2,a_3,a_4\) là các số tự nhiên.
Theo nguyên lí Dirichlet, tồn tại 9 số có hệ số \(a_1\) cùng tính chẵn, lẻ.
Trong 9 số này, tồn tại 5 số có hệ số \(a_2\) cùng tính chẵn, lẻ.
Trong 5 số này, tồn tại 3 số có hệ số \(a_3\) cùng tính chẵn, lẻ.
Trong 3 số này, tồn tại 2 số có hệ số \(a_4\) cùng tính chẵn, lẻ. Tích hai số này là số chính phương.
Áp dụng tính chất sau \(\left(a-1\right)\left(a+1\right)=a^2-1\)(\(a\in Z\)) ta được:
\(\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n+2\right).\left[\left(n+1\right)\left(n+3\right)\right]=\left(n+2\right).\left[\left(n+2\right)^2-1\right]\)
Do \(n+2\) và \(\left(n+2\right)^2-1\) là hai số nguyên tố cùng nhau nên nếu \(\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là số chính phương thì \(n+2\) và \(\left(n+2\right)^2-1\) cũng là các số chính phương
Do n là các số nguyên dương nên \(n+2\ge2\)
Với \(n+2\ge2\Rightarrow\left(n+2\right)^2-1\) không là số chính phương
\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)\) không là số chính phương
Chứng minh bằng cách phản chứng
Giả sử tồn tại số nguyên tố p thõa mãn
Đặt 3p + 19 ( p - 1 ) = n2 ( n là một số nguyên )
* Nếu p = 2, 3 dễ thấy không có số số nguyên n nào thõa mãn
* Nếu p > 3 , p lẻ
+ ) p = 4k + 1
Ta có : 3 ≡ - 1 ( mod4 )
nên 3p ≡ - 1 ( mod4 )
và 19 ≡ 3 ( mod4 ) ; p - 1 ≡ 0 ( mod4 )
Do đó VT ≡ VP ≡ - 1 ( mod4 ) ( vô lí )
+ ) p = 4k + 3
Theo định lí Fermat ta có :
3p ≡ 3 ( modp )
và 19 ( p - 1 ) ≡ - 19 ( modp )
nên VT ≡ - 16 ( modp )
Do đó n2 + 16 \(⋮\) p
Từ đề ta có 4 \(⋮\) p ( vô lí vì 4 không có ước dạng 4k + 3 )
Vậy ta có đpcm
Gỉa sử tồn tại số nguyên p thỏa mãn
Đặt \(3^p+19\left(p-1\right)=n^2\)( n là 1 số nguyên )
* Nếu p=2,3 . Dễ có ko có số nguyên n nào thỏa mãn
* Nếu p>3 , p lẻ
+) p=4k +1
Ta có
\(3=-1\left(modA\right)\)
nên : \(3^p=-1\left(modA\right)\)
Mà \(19\equiv3\left(modA\right);p-1\equiv0\left(modA\right)\)
Do đó : \(VT\equiv VP\equiv-1\left(modA\right)\)( vô lí )
+) p=4k+3
Theo định lí Fermat ta có
\(3^p=3\left(modp\right)\)
và \(19\left(p-1\right)\equiv-19\left(modp\right)\)
nên \(VT\equiv-16\left(modp\right)\)
Do đó : \(n^2+16⋮p\)
-> Ta có : \(4⋮b\)( vô lí )
Vậy ta có đpcm