Tìm GTLN và GTNN của biểu thức
3 < x < 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y=4xy\Rightarrow\frac{x+y}{xy}=\frac{1}{x}+\frac{1}{y}=4\)
\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow4>=\frac{4}{x+y}\Rightarrow x+y>=1\)(bđt svacxo)
\(x^2+y^2>=\frac{\left(x+y\right)^2}{2};xy< =\frac{\left(x+y\right)^2}{4}\)
\(\Rightarrow P=x^2+y^2-xy>=\frac{\left(x+y\right)^2}{2}-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}>=\frac{1^2}{4}=\frac{1}{4}\)
dấu = xảy ra khi \(x+y=1;x=y\Rightarrow x=y=\frac{1}{2}\left(tm\right)\)
vậy min P là \(\frac{1}{4}\)khi x=y=\(\frac{1}{2}\)
\(4x^2-2\left|2x-1\right|-4x-5=\left(2x-1\right)^2-2\left|2x-1\right|+1-5\)
\(=\left(\left|2x-1\right|-1\right)^2-5\ge-5\)
Dấu "=" xảy ra khi \(\left|2x-1\right|=1\Leftrightarrow x=1\text{ hoặc }x=0\)
=> GTNN của y là -5
\(y=\left(\left|2x-1\right|-1\right)^2-5\)
\(-2\le x\le1\Rightarrow-5\le2x-1\le1\Rightarrow0\le\left|2x-1\right|\le5\)
\(\Rightarrow-1\le\left|2x-1\right|-1\le4\Rightarrow0\le\left(\left|2x-1\right|-1\right)^2\le16\)
\(\Rightarrow y\le16-5=11\)
Dấu "=" xảy ra khi x = -2
Vậy GTLN của y là 11.