Cmr (9101+1) chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(3^n+1\) chia hết cho \(10\)
\(\Rightarrow3^4\left(3^n+1\right)\) chia hết cho \(10\)
\(\Rightarrow\left(3^4\cdot3^n+3^4\cdot1\right)\) chia hết cho \(10\)
\(\Rightarrow\left(3^{n+4}+81\right)\) chia hết cho \(10\)
\(\Rightarrow\left(3^{n+4}+1+80\right)\) chia hết cho \(10\)
Vì \(80\) chia hết cho \(10\)
\(\Rightarrow\left(3^{n+4}+1\right)\) chia hết cho \(10\)
CM. Ta có thể viết 100...01 = 103n+ 1, trong đó n là số nguyên dương. Sử dụng hằng đẳng thức a3+ b3= (a+b)(a2- a b + b2) với a = 10nvà b = 1, ta thu được (10n)3+ 1 = (10n+ 1)(102n- 10n+ 1). Do (10n+ 1) > 1 và (102n- 10n+ 1) > 1 khi n là nguyên dương nên ta có đpcm.
bạn tham khảo nha
Cậu bùi danh nghệ gì đó ơi đây là toán nâng cao chứ ko phải toán lớp 7,8 như cậu nói đâu
1) \(23^{401}+38^{202}-2^{433}=23^{4.100}.23+38^{4.50}.38^2-2^{4.108}.2^1=\left(..1\right).23+\left(..6\right).1444-\left(..6\right).2=\left(..3\right)+\left(..4\right)-\left(..2\right)=\left(..5\right)\)
a ) 992 - 199 chia hết cho 2
Vì 199 = 99 . 2 + 1 mà 992 = 99 . 99 nên 992 > 199
Ta có :
992 = 99 . 99 = ......1
199 = ....9
Vì : .......1 - .....9 = ......2
Mà : ........2\(⋮2\)
Nên 992 - 199 \(⋮2\)( ĐPCM )
b ) 201110 - 1 chia hết cho 10
Vì 2011 > 1 nên 201110 > 1
Ta có :
201110 = 2011 . 2011 = .......1
Vì : .......1 - 1 = ..........0
Mà .........0\(⋮10\)
Nên 201110 - 1 \(⋮10\)( ĐPCM )
Ta có: 102k-1=(102)k-12=(10k-1)(10k+1)
Mà 10k-1 chia hết cho 19
=>102k-1 chia hết cho 19
Mình đang cần gấp
Dễ mà bạn !!!
Áp dụng bổ đề a^n+b^n chia hết cho a+b với mọi n lẻ
=> 9^101+1^101 chia hết cho (9+1) do 101 là số lẻ
=> 9^101+1 chia hết cho 10
=> đpcm.