K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2022

\(a^2 > 0 ⇔ \sqrt{a^2} > 0 \)

           \(⇔ |a| > 0\)

           \(⇔ \left[\begin{array}{} a > 0 \\ - a > 0 \end{array} \right . \)

           \(⇔ \left[\begin{array}{} a > 0 \\ a < 0 \end{array} \right . \)

           \(⇔ a ≠ 0\) (Điều phải chứng minh)

26 tháng 2 2022

\(a^2>0\Leftrightarrow a^2\ne0\)(vì a2 > 0 với mọi a)

           \(\Leftrightarrow a\ne0\)(Điều phải chứng minh)

3) \(\frac{x-2}{x-5}-\frac{5}{x^2-5x}=\frac{1}{x}\) \(\Leftrightarrow\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\) \(\Leftrightarrow\frac{x.\left(x-2\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x-5\right)}{x.\left(x-5\right)}\) Mc: \(x.\left(x-5\right)\) \(\Leftrightarrow\) \(x^2\) - 2\(x\) - 5 = \(x\) - 5 \(\Leftrightarrow\) \(x^2\) - 2\(x\) - \(x\) - 5 + 5 = 0 \(\Leftrightarrow\) \(x^2\) - 3\(x\) = 0 \(\Leftrightarrow\) \(x\) . (\(x\) - 3) =...
Đọc tiếp

3) \(\frac{x-2}{x-5}-\frac{5}{x^2-5x}=\frac{1}{x}\)

\(\Leftrightarrow\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\)

\(\Leftrightarrow\frac{x.\left(x-2\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x-5\right)}{x.\left(x-5\right)}\)

Mc: \(x.\left(x-5\right)\)

\(\Leftrightarrow\) \(x^2\) - 2\(x\) - 5 = \(x\) - 5

\(\Leftrightarrow\) \(x^2\) - 2\(x\) - \(x\) - 5 + 5 = 0

\(\Leftrightarrow\) \(x^2\) - 3\(x\) = 0

\(\Leftrightarrow\) \(x\) . (\(x\) - 3) = 0

\(\Leftrightarrow\) \(x\) = 0 hoặc \(x\) - 3 = 0

\(\Leftrightarrow\) \(x\) = 0 hoặc \(x\) = 3

Vậy \(x\) = 0 hoặc \(x\) = 3

\(x-5\ne0\Rightarrow x\ne5\)

\(x^2-5\ne0\Rightarrow x\ne5\)\(x\ne0\) \(\Rightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)

\(x\ne0\)

Vậy S = {3}

4) \(\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x^2+7x}\)

\(\Leftrightarrow\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x.\left(x+7\right)}\)

\(\Leftrightarrow\frac{x.\left(x-4\right)}{x.\left(x+7\right)}-\frac{1.\left(x+7\right)}{x.\left(x+7\right)}=\frac{-7}{x.\left(x+7\right)}\)

Mc: \(x.\left(x+7\right)\)

\(\Leftrightarrow x^2-4x-x-7=-7\)

\(\Leftrightarrow x^2-4x-x=-7+7\)

\(\Leftrightarrow\) \(x^2-5x=0\)

\(\Leftrightarrow x.\left(x-5\right)=0\)

\(\Leftrightarrow x=0\) hoặc \(x-5=0\)

\(\Leftrightarrow x=0\) hoặc \(x=5\)

Vậy \(x=0\) hoặc \(x=5\)

\(x+7\ne0\Rightarrow x\ne-7\)

\(x^2+7\ne0\Rightarrow x\ne-7\)\(x\ne0\) \(\Rightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-7\end{matrix}\right.\)

\(x\ne0\)

Vậy S = {5}

5) \(\frac{x+2}{x-2}+\frac{x-2}{x+2}=\frac{8x}{x^2-4}\)

\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{matrix}\right.\Rightarrow TXĐ\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

Mc : \(\left(x-2\right).\left(x+2\right)\)

\(\Leftrightarrow\frac{\left(x+2\right).\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{\left(x-2\right).\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{8x}{\left(x-2\right).\left(x+2\right)}\)

\(\Leftrightarrow x^2+2x+2x+4+x^2-2x-2x+4=8x\)

\(\Leftrightarrow x^2+x^2+2x+2x-2x-2x-8x+4+4=0\)

\(\Leftrightarrow2x^2-8x+8=0\)

\(\Leftrightarrow\) \(2x^2-4x-4x+8=0\)

\(\Leftrightarrow\) \(2x.\left(x-2\right)-4.\left(x-2\right)=0\)

\(\Leftrightarrow\left(2x-4\right).\left(x-2\right)=0\)

\(\Leftrightarrow2x-4=0\) hoặc \(x-2=0\)

\(\Leftrightarrow x=2\) hoặc \(x=2\)

\(\Leftrightarrow x=2\) (Loại) hoặc x = 2 (Loại)

Vậy S = \(\left\{\varnothing\right\}\)

6) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)

\(\Leftrightarrow\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}=\frac{4}{\left(x-1\right).\left(x+1\right)}\)

MC: \(\left(x-1\right).\left(x+1\right)\)

\(\Leftrightarrow x^2+x+x+1-x^2+x+x-1=4\)

\(\Leftrightarrow x^2-x^2+x+x+x+x+1-1-4=0\)

\(\Leftrightarrow4x-4=0\)

\(\Leftrightarrow4.\left(x-1\right)=0\)

\(\Leftrightarrow\) 4 = 0 hoặc \(x-1=0\)

\(\Leftrightarrow\) 4 = 0 hoặc \(x=1\)

\(\Leftrightarrow\) 4 = 0 (Loại) hoặc \(x=1\) (Loại)

Vậy S = \(\left\{\varnothing\right\}\)

7) \(\frac{x+1}{x-1}+\frac{-4x}{x^2-1}=\frac{x-1}{x+1}\)

\(\Leftrightarrow\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{-4x}{\left(x-1\right).\left(x+1\right)}=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}\)

\(Mc:\left(x-1\right).\left(x+1\right)\)

\(\Leftrightarrow\) \(x^2+x+x+1-4x=x^2-x-x+1\)

\(\Leftrightarrow x^2-x^2+x+x-4x+x+x=-1+1\)

\(\Leftrightarrow0=0\) (Nhận)

Vậy S = \(\left\{x\in R;x\ne\pm1\right\}\)

0
AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Lời giải:

$\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}$

$\Leftrightarrow a+b=a+c+b+c+2\sqrt{(a+c)(b+c)}$

$\Leftrightarrow 2c+2\sqrt{(a+c)(b+c)}=0$

$\Leftrightarrow c+\sqrt{(a+c)(b+c)}=0$

\(\Leftrightarrow \left\{\begin{matrix} -c=\sqrt{(a+c)(b+c)}\\ c< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c^2=(c+a)(c+b)\\ c< 0\end{matrix}\right.\)

\( \Leftrightarrow \left\{\begin{matrix} ab+bc+ac=0\\ c< 0\end{matrix}\right.\Leftrightarrow \frac{ba+bc+ac}{abc}=0\) (do $a,b>0$)

$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$

 (đpcm)

 

 

 

 

29 tháng 4 2019

thể hiện vừa thôi bạn -__

29 tháng 4 2019

Sai rồi nha bae , ĐKXĐ là \(\hept{\begin{cases}y\ne0\\y\ne\pm5\end{cases}}\)nha nên dẫn đến đáp án sai luôn