K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

Ta có: OB=OC

AB=AC

Do đó: OA là đường trung trực của BC

=>OA\(\perp\)BC

11 tháng 12 2020

help meee plssss

20 tháng 12 2018

O A B H C Q D E

a, Vì \(\hept{\begin{cases}OB=OC\\OA\perp BC\end{cases}}\)

=> OA là đường trung trực BC

Mà OA cắt BC tại H

=> H là trung điểm BC

b, Vì AB là tiếp tuyến (O)

=> \(\widehat{ABO}=90^o\) 

Do OA là trung trực của BC

=> AB = AC
Xét \(\Delta\)ABO và \(\Delta\)ACO có :

AB = AC (cmt)

OB = OC (=R)

AO chung

=> \(\Delta ABO=\Delta ACO\left(c.c.c\right)\)

\(\Rightarrow\widehat{ACO}=\widehat{ABO}=90^o\)

\(\Rightarrow AC\perp CO\)

=> AC là tiếp tuyến (O) 

c, Xét tam giác OBA vuông tại B có
\(sin\widehat{BAO}=\frac{BO}{OA}=\frac{R}{2R}=\frac{1}{2}\)

\(\Rightarrow\widehat{BAO}=30^o\)

Vì AB , AC là 2 tiếp tuyến (O)

=> AO là p.g góc BAC

\(\Rightarrow\widehat{BAC}=2\widehat{BAO}=2.30^o=60^o\)
Vì AB = AC (Cmt)

=> \(\Delta\)ABC cân tại A

Mà ^BAC = 60o

=> \(\Delta\)ABC đều

Còn câu d, mình chưa nghĩ ra :(

19 tháng 5 2023

a. Ta có góc BOC = 120\(^0\)

\(\Rightarrow\)  góc BAC = 60\(^0\). Vì AB và AC là tiếp tuyến nên AB = AC.

Do đó, tam giác ABC là tam giác đều.

Vì tam giác ABC đều nên ta có BC = AB = AC = 2R.

b. Ta có góc BOC = 120\(^0\), suy ra góc BAC = 60\(^0\).

Gọi H là hình chiếu của O trên BC. Khi đó OH = R.cos60\(^0\) = R/2.

Gọi x = BM, y = MC. Ta có:

+ BH = R-X

+ CH = R-Y

+ AH = AB - BH = R + x

+ AH = AC - CH = R + y

 Áp dụng định lý Ptolemy cho tứ giác a. Ta có góc BOC = 120\(^0\), suy ra góc BAC = 60\(^0\). Vì AB và AC là tiếp tuyến nên AB = AC. Do đó, tam giác ABC là tam giác đều.

Vì tam giác ABC đều nên ta có BC = AB = AC = 2R.

Áp dụng định lý Ptolemy cho tứ giác ABOM và ACOM, ta có:

AB . OM + AC . OM = AO . BC

R . (x + y) + R . (x + y + BC) = AO . BC

R . (2x + 2y + BC) = AO . BC

Do đó, ta có: BC = (2R . x)/(AO - 2R) = (2R . y)/(AO - 2R)

Gọi T là điểm cắt của tiếp tuyến tại M với BC. Ta có:

+ OT vuông góc với BC

+ MT là đường trung bình của tam giác OBC

Do đó, ta có: MT = (1/2)BC = R . x/(AO - 2R) = R . y/(AO - 2R)

Gọi G là trọng tâm của tam giác AEF. Ta có:

+ OG song song với EF và bằng một nửa đường cao AH của tam giác ABC

+ AG = (2/3)AH

Do đó, ta có: OG = (1/3)AO và EF = 20G = (2/3)AO/3

Áp dụng định lý Ptolemy cho tứ giác OFCI, ta có:

OF . IC + OI . FC = OC . FI

R . (y + EF) + R . x = R . (y+x)

R . y + (2/3)AO/3 = R . x

Do đó, ta có: R.y/(AO-2R) + (2/3)AO/(3R) = R.x/(AO-2R)

Tổng quát hóa, ta có: nếu M thuộc cung BC nhỏ thì chu vi tam giác AEF không đổi.

Câu c. mik ko bt làm