K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2019

Cách 1:

a, Ta  có: \(2\sqrt{3}=\sqrt{4.3}=\sqrt{12}\)\(3\sqrt{2}=\sqrt{9.2}=\sqrt{18}\)

Vì 18 > 12 \(\Rightarrow\sqrt{18}>\sqrt{12}\)\(\Rightarrow3\sqrt{2}>2\sqrt{3}\)

b, Ta có: \(4\sqrt{3}=\sqrt{16.3}=\sqrt{48}\)\(3\sqrt{4}=\sqrt{9.4}=\sqrt{36}\)

Vì 48 > 36 \(\Rightarrow\sqrt{48}>\sqrt{36}\)\(\Rightarrow4\sqrt{3}>3\sqrt{4}\)

Cách 2:

Đặt \(A=2\sqrt{3}\)\(\Rightarrow A^2=\left(2\sqrt{3}\right)^2=4.3=12\)

      \(B=3\sqrt{2}\)\(\Rightarrow B^2=\left(3\sqrt{2}\right)^2=9.2=18\)

Vì 12 < 18 => A2 < B2 => A < B 

b, Đặt \(A=4\sqrt{3}\)\(\Rightarrow A^2=\left(4\sqrt{3}\right)^2=16.3=48\)

\(B=3\sqrt{4}\)\(\Rightarrow B^2=\left(3\sqrt{4}\right)^2=9.4=36\)

Vì 48 > 36 => A2 > B2 => A > B

Bình Tất cả lên

a)  2sqrt(3) < 3sqrt(2)

21 tháng 6 2023

a)

Có: \(2>1>0\)

\(\Rightarrow\sqrt{2}>1\Rightarrow1+\sqrt{2}>1+1\\ \Leftrightarrow1+\sqrt{2}>2\)

b) Có: \(0< \sqrt{3}< 3\)

\(\Rightarrow3+1>\sqrt{3}+1\\ \Rightarrow4>\sqrt{3}+1\)

c) Có: \(0< \sqrt{11}< \sqrt{25}\left(0< 11< 25\right)\)

\(\Rightarrow\sqrt{11}< 5\\ \Rightarrow-2\sqrt{11}>-2.5=-10\left(-2< 0\right)\)

d) Có: \(0< \sqrt{11}< \sqrt{16}=4\left(do.0< 11< 16\right)\)

\(\Rightarrow3\sqrt{11}< 3.4\\ \Leftrightarrow3\sqrt{11}< 12\)

a: 2=1+1<1+căn 2

b: 4=1+3>1+căn 3

c: -2căn 11=-căn 44

-10=-căn 100

mà 44<100

nên -2 căn 11>-10

d: 12=3*4=3*căn 16>3*căn 11

10 tháng 8 2023

2/ 

a) Ta có:

\(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{9\cdot2}=\sqrt{18}\)

\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{4\cdot3}=\sqrt{12}\)

Mà: \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)

b) Ta có:

\(4\sqrt[3]{5}=\sqrt[3]{4^3\cdot5}=\sqrt[3]{320}\)

\(5\sqrt[3]{4}=\sqrt[3]{5^3\cdot4}=\sqrt[3]{500}\)

Mà: \(320< 500\Rightarrow\sqrt[3]{320}< \sqrt[3]{500}\Rightarrow4\sqrt[3]{5}< 5\sqrt[3]{4}\)

10 tháng 8 2023

3/

a)ĐKXĐ: \(x\ne1;x\ge0\)

b) \(A=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)

\(A=\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\)

\(A=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\)

\(A=1^2-\left(\sqrt{x}\right)^2\)

\(A=1-x\)

b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)

\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)

mà 80>75

nên \(4\sqrt{5}>5\sqrt{3}\)

Bài 1: 

Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)

Số giá trị nguyên thỏa mãn điều kiện là:

\(\left(2+4\right)+1=7\)

 

26 tháng 8 2016

a) \(9=6+3=6+\sqrt{9}\)

\(6+2\sqrt{2}=6+\sqrt{8}\)

\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)

b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)

\(3^2=9=5+4=5+\sqrt{16}\)

\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)

c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)

\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)

\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)

d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)

\(2^2=14-10=14-\sqrt{100}\)

\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)

\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)

 

HQ
Hà Quang Minh
Giáo viên
23 tháng 8 2023

\(a,\sqrt{42}=\sqrt{3\cdot14}>\sqrt{3\cdot12}=6\\ \sqrt[3]{51}=\sqrt[3]{17}< \sqrt[3]{3\cdot72}=6\\ \Rightarrow\sqrt{42}>\sqrt[3]{51}\\ b,16^{\sqrt{3}}=4^{2\sqrt{3}}\\ 18>12\Rightarrow3\sqrt{2}>2\sqrt{3}\Rightarrow4^{3\sqrt{2}}>4^{2\sqrt{3}}\\ \Rightarrow4^{3\sqrt{2}}>16^{\sqrt{3}}\)

\(c,\left(\sqrt{16}\right)^6=16^3=4^6=4^2\cdot4^4=4^2\cdot16^2\\ \left(\sqrt[3]{60}\right)^6=60^2=4^2\cdot15^2\\ 4^2\cdot16^2>4^2\cdot15^2\Rightarrow\sqrt{16}>\sqrt[3]{60}\Rightarrow0,2^{\sqrt{16}}< 0,2^{\sqrt[3]{60}}\)

1 tháng 7 2017

dell bt

27 tháng 1 2017

CÂU 3 : ĐỀ BÀI , SUY RA :

X-1 + X-2 =3 <=> 2X = 6 <=> X =3 

16 tháng 7 2021

\(1.-3< -5+\sqrt{5}\)

\(2.-4>-2\sqrt{5}\)

\(3.-3\sqrt{5}< -6\)

2) \(4=\sqrt{16}\)

\(2\sqrt{5}=\sqrt{20}\)

mà 16<20

nên \(-4>-2\sqrt{5}\)

3) \(3\sqrt{5}=\sqrt{45}\)

\(6=\sqrt{36}\)

mà 45>36

nên \(-3\sqrt{5}< -6\)