K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2019

Đề có phải là thế này không bạn: \(\sqrt{\frac{49}{6}}< \left|x-\frac{2}{3}\right|< \frac{26}{\sqrt{81}}\) ?


1 tháng 4 2021

p/s thứ nhất là căn của 49 thôi chứ không phải căn cả p/s

 

24 tháng 4 2021

Ta có: \(\sqrt{7}<8.\sqrt{x-3}\)

         \(\Leftrightarrow 7<64.(x-3)\)

         \(\Leftrightarrow \frac{7}{64}<(x-3)\)

         \(\Leftrightarrow \frac{7}{64}+3< x\)

         \(\Leftrightarrow \frac{199}{64}< x\)  

Vậy \(x> \frac{199}{64}\)

               

          

HQ
Hà Quang Minh
Giáo viên
1 tháng 8 2023

\(A=x+\sqrt{x}\) có điều kiện xác định là: \(x\ge0\)

\(\Rightarrow A_{min}=0\) khi x = 0

\(B=x+5\sqrt{x+7}\)  có điều kiện xác định là: \(x\ge-7\)

\(\Rightarrow B_{min}=-7+5\cdot0=-7\) khi x = -7

\(C=2x-6\sqrt{x+1}\) có điều kiện xác định là \(x\ge-1\)

\(\Rightarrow C_{min}=2\cdot\left(-1\right)-6\cdot0=-2\) khi x = -1

12 tháng 10 2023

Ta có:

\(\sqrt{2}\approx1,414214,...\) 

\(\sqrt{3}\approx1,732051...\)

Nên số hữu tỉ giữa hai số là: \(1,5=\dfrac{3}{2}\)

Mà: \(\sqrt{2}< \sqrt{2,5}< \sqrt{3}\)

Nên số vô tỉ giữa hai số là: \(\sqrt{2,5}\approx1,58...\)

3 tháng 7 2015

\(\sqrt{x}+\sqrt{x-5}\le\sqrt{5}\)

<=>x+x-5+\(2\sqrt{x^2-5}\le5\)

<=>\(2\sqrt{x^2-5x}\le10-2x\)

<=>4(x2-5x)<100-40x+4x2(bình 2 vế)

<=>4x2-20x+40x-4x2<100

<=>20x<100

<=>x<5

HQ
Hà Quang Minh
Giáo viên
12 tháng 8 2023

\(a_1,\sqrt{x}< 7\\ \Rightarrow x< 49\\ a_2,\sqrt{2x}< 6\\ \Rightarrow x< 18\\ a_3,\sqrt{4x}\ge4\\ \Rightarrow4x\ge16\\ \Rightarrow x\ge4\\ a_4,\sqrt{x}< \sqrt{6}\\ \Rightarrow x< 6\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 8 2023

\(b_1,\sqrt{x}>4\\ \Rightarrow x>16\\ b_2,\sqrt{2x}\le2\\ \Rightarrow2x\le4\\ \Rightarrow x\le2\\ b_3,\sqrt{3x}\le\sqrt{9}\\ \Rightarrow3x\le9\\ \Rightarrow x\le3\\ b_4,\sqrt{7x}\le\sqrt{35}\\ \Rightarrow7x\le35\\ \Rightarrow x\le5\)

1: Thay \(x=\dfrac{1}{25}\) vào C, ta được:

\(C=\left(\dfrac{1}{5}+2\right):\left(\dfrac{1}{5}-3\right)=\dfrac{11}{5}:\dfrac{-14}{5}=-\dfrac{11}{14}\)

2: Để C=-2 thì \(\sqrt{x}+2=-2\left(\sqrt{x}-3\right)\)

\(\Leftrightarrow\sqrt{x}+2+2\sqrt{x}-6=0\)

\(\Leftrightarrow3\sqrt{x}=4\)

hay \(x=\dfrac{16}{9}\)

Để \(C=\dfrac{7}{5}\) thì \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=\dfrac{7}{5}\)

\(\Leftrightarrow7\sqrt{x}-21=2\sqrt{x}+10\)

\(\Leftrightarrow5\sqrt{x}=31\)

hay \(x=\dfrac{961}{25}\)