cho a > b >c , a+ b + c = 0 , a^2 + b^2 + c^2 = 6 . TÌm GINN và GTLN của S =a +b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Đặt P = (a-1)/a +(b-1)/b+(c-4)/c
Dễ thấy P = 3 - (1/a + 1/b + 4/c)
Áp dụng BĐT Bu-nhi-a-cốp-xki :
(1/a + 1/b + 4/c)(a + b + c) <= [căn(1/a).căn a + căn(1/b).căn b + căn(4/c).căn c]^2 = (1 + 1 + 2)^2 = 16
=> 1/a + 1/b + 4/c <= 16/6 = 8/3
Suy ra : P >= 3 - 8/3 = 1/3
Min P = 3 <=> a = b = 3/2 và c = 3
2) Đặt P = (a+1)/[√(a⁴+a+1) -a²] = {(a + 1).[√(a⁴+a+1) + a²]} / (a^4 + a + 1 - a^2) = (a + 1).[√(a⁴+a+1) + a²]/(a + 1) = √(a⁴+a+1) + a² (nhân liên hợp)
Ta có : 4a^2 + a√2 -√2 = 0
=> a^2 = (√2 - a√2)/4 = (1 - a)/(2√2)
=> a^4 = (1 - 2a + a^2)/8
Do đó P = √[(1 - 2a + a^2)/8 + a + 1] + (1 - a)/(2√2) = √[(a^2 + 6a + 9)/8] + (1 - a)/(2√2) = (a + 3)/(2√2) + (1 - a)/(2√2) = √2 (đpcm)
1) Tìm GTNN :
Ta có : \(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+\left(x+y\right)}\ge\frac{1}{\frac{\left(x+y\right)^2}{2}+1}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
2) Áp dụng BĐT Svacxo ta có :
\(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{\left(a+b+c\right)^2}{3+a+b+c}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
2/ Áp dụng bđt Cô- si cho 2 số dương ta có :
\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge2\sqrt{\frac{a^2}{1+b}\frac{1+b}{4}}=a\)
Tương tự ta có \(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b;\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge a+b+c-\left(\frac{1+b}{4}+\frac{1+c}{4}+\frac{1+a}{4}\right)\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge3-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=3-\frac{1}{4}.3-\frac{3}{4}=\frac{3}{2}\)
Dấu "=" xảy ra <=> a=b=c=1