Cho \(\Delta ABC\) có tâm O,
K là trung điểm AB
E là trung điểm OC
Chứng minh \(KE\perp DE\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
b: Xét ΔABE và ΔACD có
AB=AC
góc BAE chung
AE=AD
Do đó: ΔABE=ΔACD
c: Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
=>ΔOBC cân tại O
Ta có: AB=AC
OB=OC
Do đó: AO là đường trung trực của BC(1)
=>AO đi qua trung điểm của BC
d: Xét ΔABI vuông tại B vàΔACI vuông tại I có
AI chug
AB=AC
Do đó: ΔABI=ΔACI
Suy ra: IB=IC
hay I nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,O,I thẳng hàng
a: Xét ΔABH vuông tai H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔABC co
AH,CN là trung tuyến
AH cắt CN tại G
=>G là trọng tâm
c: Xét ΔABC có
H là trung điểm của CB
HE//AB
=>E là trung điểm của AC
=>B,G,E thẳng hàng
bn tham khảo ở đây nha:http://text.123doc.org/document/658748-6-bai-toan-hinh-4-de-thi-ki-i-toan-8.htm
câu a theo hình của mình thì làm được rồi nhưng câu b mtheo hình của mình thì lại thấy kì kì bạn thử vẽ hình hộ mình được không
a) Xét ΔADI và ΔAHI , có :
ID = IH ( I là trung điểm của DH )
IA chung
góc AID = góc AIH = 90o
=> ΔADI = ΔAHI (c.g.c)