K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

2+4+6.......+2n=870

11 tháng 7 2018

Ta có: \(3a+4b⋮11\Rightarrow4.\left(3a+4b\right)⋮11\Rightarrow12a+16b⋮11\)

\(\Rightarrow\left(a+5b\right)+\left(11a+11b\right)⋮11\)

\(\Rightarrow\left(a+5b\right)+11.\left(a+b\right)⋮11\)

\(\Rightarrow a+5b⋮11\)

13 tháng 1 2018

Ta có số hạng của A là:(100-1):1+1=100(số)

Nên A=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+...+(2^96+2^97+2^98+2^99+2^100)

​A=62+2^5*62+...+2^95*62=62*(1+2^5+...+2^95) Suy ra A chia hết cho 62.Tk mình nhé bn!

13 tháng 1 2018

Ta có : 62 = 2 . 31

Mà A luôn chia hết cho 2                                        ( 1 )

A = 2 + 22 + 2+ .... + 2100

A = ( 2 + 22 + 23 + 24 + 25 ) + .... + (  296 + 297 + 298 + 299 + 2100 )

A = 2 . ( 1 + 2 + 22 + 23 + 24 ) + ... + 296 . ( 1 + 2 + 22 + 23 + 24 )

A = 2 . 31 + ... + 296 . 31 \(⋮\)31                               ( 2 )

Từ 1 và 2 => A chia hết cho 62

Vậy A chia hết cho 62

15 tháng 10 2016

2A=2^2+2^3+2^4+....+2^101

2A-A=(2^2+2^3+2^4+....+2^101) - (2+2^2+2^3+...+2^100)

1A=2^101 - 2

A= 2^101-2

15 tháng 10 2016

mình chỉ làm được câu A thôi

A=2+2^2+2^3+...+2^100

A=2^(1+2+3+...+100)

Tính (1+2+3+...+100)

([100-1]/1+1)/2+(1+100)=5050

A=2^5050

A=25502500

15 tháng 11 2015

A= 3a+5b

B= a+4b

3B - A = 3a+12b - 3a -5b = 7b  chia hết cho 7

+ Nếu A chia hết cho 7 => 3B chia hết cho 7 => B chia hết cho 7

+Nếu B chia hết cho 7 => 3B chia hết cho 7 => A chia hết cho 7

=> đpcm

15 tháng 11 2015

Xét 3a+5b+4(a+4b)

   = 3a+5b+4a+16b

   = 7a+21b 

   =7(a+3b) chia hết cho 7

Nên 3a+5b chia hết cho 7 <=> a+4b chia hết cho 7