K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

Xin lỗi tớ chỉ trả lời đucợ phần a mà cx ko biết có đúng không nhưng tớ học dạng này rồi

a)

+ Nếu p = 2 thì p + 10 = 12 là hợp số

                       p + 20 = 22 là hợp số

\(\Rightarrow\)Loại

+ Nếu p = 3 thì p + 10 = 13 là Số nguyên tố

                       p + 20 = 23 là số nguyên tố

\(\Rightarrow\) Chọn

+ Nếu p > 3 thì p có dạng 3k + 1; 3k +2 ( k \(\in\)N* )

- Với p = 3k + 1 thì p + 20 = 3k +1 + 20 = 3k+21. Mà 21 \(⋮\)\(\Rightarrow\)21 là hợp số

- Với p = 3k +2 thì p + 10 = 3k + 2 + 10 = 3k + 12. Mà 12 \(⋮\)2,6,3,4 \(\Rightarrow\)12 là hợp số

\(\Rightarrow\) Loại

Vậy, p = 3

22 tháng 1 2017

123 nha

25 tháng 1 2017

a, Ta có: p = 2 => p + 10 = 12 là hợp số

              p = 3 => p + 10 = 13

                            p + 20 = 23

Vậy p = 3 thỏa mãn yêu cầu

Giả sử p > 3 thì p sẽ có dạng:

p = 3k + 1 hoặc p = 3k + 2

  Với p = 3k + 1 thì p + 20 = 3k + 1 + 20 = 3k + 21 \(⋮\)3

=> p + 20 là hợp số

  Với p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3

=> p + 10 là hợp số

Do đó: với p = 3 thỏa mãn yêu cầu đề bài

b, Ta có: p = 2 => p + 2 = 4 là hợp số

              p = 3 => p + 6 = 9 là hợp số

              p = 5 => p + 2 = 7

                            p + 6 = 11

                            p + 8 = 13

                            p + 14 = 19

Vậy p = 5 thỏa mãn

Giả sử p > 5 thì p sẽ có dạng:

p = 5k + 1; p = 5k + 2; p = 5k + 3; p = 5k + 4

  Với p = 5k + 1 thì: p + 14 = 5k + 1 + 14 = 5k + 15 \(⋮\)5

=> p + 14 là hợp số

  Với p = 5k + 2 thì: p + 8 = 5k + 2 + 8 = 5k + 10 \(⋮\)5

=> p + 8 là hợp số

  Với p = 5k + 3 thì: p + 2 = 5k + 3 + 2 = 5k + 5 \(⋮\)5

=> p + 2 là hợp số

  Với p = 5k + 4 thì: p + 6 = 5k + 4 + 6 = 5k + 10 \(⋮\)5

=> p + 6 là hợp số

Do đó: với p = 5 thỏa mãn yêu cầu bài toán

25 tháng 1 2017

a, p=3

b, p=5

đúng mà, bạn tk mk đi.

22 tháng 11 2021

ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc 

23 tháng 1 2017

Tìm số nguyên tố p sao cho p+2; p+6; p+8; p+14 đều là các số nguyên tố

Với p=2 ta được p+4=6(hợp số)(Loại)

Với p=3 ta được p+4=7(số nguyên tố),p+8=11(snt)(TM) 

Làm nốt xét p khác 3 nhé!

Trả lời :..........................

p = 5......................

Hk tốt

4 tháng 12 2018

Để mk ghi lời giải cho bạn hiểu nhé :>

+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm

Chúc bạn học tốt :>

24 tháng 10 2021

Trường hợp 1: p=3

=> p+8=11 và p+16=19(nhận)

Trường hợp 2: p=3k+1

=>p+8=3k+9(loại)

Trường hợp 3: p=3k+2

=>p+16=3k+18(loại)