Đoạn mạch AB gồm 3 điện trở R1 , R2 , R3 mắc nối tiếp với nhau . Biết R1 = 2R2= 4R3 = 20Ω . Điện trở tương đương của đoạn mạch AB là?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điện trở tương đương của đoạn mạch là:
\(R_{tđ}=R_1+R_2+R_3=20+30+60=110\left(\Omega\right)\)
Cho ba điện trở R1 = R2 = 10 , R3 = 20 . R1 mắc song R2, R1 và R2 mắc nối tiếp với R3. Điện trở tương đương của đoạn mạch là: A. 10Ω B.15Ω C.20Ω D.25Ω
Giải thích:
\(R_3nt\left(R_1//R_2\right)\)
\(R_{12}=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{10\cdot10}{10+10}=5\Omega\)
\(R_{tđ}=R_3+R_{12}=20+5=25\Omega\)
Chọn D.
Bạn tự làm tóm tắt nhé!
a. Điện trở tương đương: Rtđ = R1 + R2 + R3 = 15 + 10 + 20 = 45(\(\Omega\))
b + c. Do mạch mắc nối tiếp nên I = I1 = I2 = I3 = 0,5A
Hiệu điện thế giữa hai đầu đoạn mạch và mỗi điện trở:
U = Rtđ.I = 45.0,5 = 22,5(V)
U1 = R1.I1 = 15.0,5 = 7,5(V)
U2 = R2.I2 = 10.0,5 = 5(V)
U3 = R3.I3 = 20.0,5 = 10(V)
R1//R2
a, =>\(Rtd=\dfrac{R1R2}{R1+R2}=\dfrac{20.20}{20+20}=10\left(ôm\right)\)
b,R1//R2//R3
\(=>\dfrac{1}{Rtd}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{20}+\dfrac{1}{20}+\dfrac{1}{15}=>Rtd=6\left(ôm\right)\)c,
=>U1=U2=U3=30V
\(=>I1=\dfrac{U1}{R1}=\dfrac{30}{20}=1,5A,=>I2=\dfrac{U2}{R2}=1,5A\)
\(=>I3=\dfrac{U3}{R3}=2A\)
\(=>Im=\dfrac{U}{Rtd}=\dfrac{30}{6}=5A\)
R1= 20Ω
R2= 20/2= 10 Ω
R3= 20/4= 5Ω
\(\frac{1}{R_{tđ}}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}\\ \Leftrightarrow\frac{1}{R_{tđ}}=\frac{1}{20}+\frac{1}{10}+\frac{1}{5}=\frac{7}{20}\\ \Rightarrow R_{tđ}=\frac{20}{7}\left(\Omega\right)\)
Bn ơi (nối tiếp )