Chứng minh tông của 3 số tự nhiên liên tiếp là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ước chung của (m,mn+8) vì m lẻ => d lẻ.
Ta có m = kd (vì d là ước của m) => mn + 8 = kdn + 8
--> khd + 8 chia hết cho d mà khd chia hết cho d => 8 chia hết cho d --> d là ước của 8 do d lẻ => d = 1.
vậy m và mn + 8 là nguyên tố cùng nhau
1.n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Gọi n số đó là \(a_1=\left(n+1\right)!+2;a_2=\left(n+1\right)!+3;...;a_n=\left(n+1\right)!+n\).
Khi đó \(a_k=\left(n+1\right)!+k+1\). (Với \(1\le k\le n\))
Dễ thấy \(k+1\le n+1\) nên \(\left(n+1\right)!⋮k+1\Rightarrow a_k⋮k+1\). Mà \(a_k>k+1\) nên \(a_k\) là hợp số.
Vậy...
Gọi số thứ nhất là n, số thứ hai là n+1, ƯC(n,n+1)=a
Ta có: n chia hết cho a(1); n+1 chia hết cho a(2)
Từ (1) và (2) ta được:
n+1-n chia hết cho a
=> 1 chia hết cho a
=> a=1
=> ƯC(n,n+1)=1
=> n và n+1 là hai số nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là hai số nguyên tố cùng nhau