K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 11 2019

a/

\(\Leftrightarrow\sqrt{x^2-1}=x+m\) (\(x\ge-m\))

\(\Leftrightarrow x^2-1=x^2+2mx+m^2\)

\(\Leftrightarrow2mx=-1-m^2\) (\(m=0\) pt vô nghiệm)

\(\Rightarrow x=\frac{-1-m^2}{2m}\)

\(\Rightarrow\frac{-1-m^2}{2m}\ge-m\Leftrightarrow\frac{1+m^2}{2m}-m\le0\)

\(\Leftrightarrow\frac{1-m^2}{2m}\le0\)

\(\Rightarrow\left[{}\begin{matrix}-1\le m< 0\\m\ge1\end{matrix}\right.\)

NV
9 tháng 11 2019

b/ \(x\ge m\)

\(\Leftrightarrow2x^2+mx-3=\left(x-m\right)^2\)

\(\Leftrightarrow2x^2+mx-3=x^2-2mx+m^2\)

\(\Leftrightarrow x^2+3mx-m^2-3=0\) (1)

\(ac< 0\Rightarrow\left(1\right)\) luôn luôn có nghiệm

Để (1) có 2 nghiệm thỏa mãn \(x_1< x_2< m\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(m\right)>0\\\frac{S}{2}< m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2+3m^2-m^2-3>0\\-\frac{3m}{2}< m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m^2>1\\m>0\end{matrix}\right.\) \(\Rightarrow m>1\)

Vậy để pt đã cho có nghiệm thì \(m\le1\)

28 tháng 8 2021

hello

AH
Akai Haruma
Giáo viên
7 tháng 10 2021

Lời giải:

a. Đặt $f(x)=x+\sqrt{2x^2+1}$

$f'(x)=1+\frac{2x}{\sqrt{2x^2+1}}=0\Leftrightarrow x=\frac{-1}{\sqrt{2}}$

Lập BBT ta thấy:

$f_{\min}=f(\frac{-1}{\sqrt{2}})=\frac{\sqrt{2}}{2}$

\(f(x)\to +\infty \) khi \(x\to +\infty; x\to -\infty \)

Do đó $x+\sqrt{2x^2+1}=m$ có nghiệm khi $m\geq \frac{\sqrt{2}}{2}$

b. TXĐ: $x\in [3;+\infty)$

BPT $\Leftrightarrow m(x-1)\leq \sqrt{x-3}+1$

$\Leftrightarrow m\leq \frac{\sqrt{x-3}+1}{x-1}$

Xét $f(x)=\frac{\sqrt{x-3}+1}{x-1}$
$f'(x)=0\Leftrightarrow x=7-2\sqrt{3}$

Lập BBT ta thấy $f_{\max}=f(7-2\sqrt{3})=\frac{1+\sqrt{3}}{4}$
Để BPT có nghiệm thì $m\leq \frac{1+\sqrt{3}}{4}$

 

 

7 tháng 8 2021

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

7 tháng 8 2021

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

28 tháng 1 2021

a, \(\sqrt{2x^2-2x+m}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2x+m=x^2+2x+1\\x+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+m-1=0\left(1\right)\\x\ge-1\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm \(x\ge-1\) chỉ có thể xảy ra các trường hợp sau

TH1: \(x_1\ge x_2\ge-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{x_1+x_2}{2}\ge-1\\1.f\left(-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\2\ge-1\\m+4\ge0\end{matrix}\right.\)

\(\Leftrightarrow-4\le m\le5\)

TH2: \(x_1\ge-1>x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\m+4< 0\end{matrix}\right.\)

\(\Rightarrow\) vô nghiệm

Vậy \(-4\le m\le5\)

30 tháng 11 2021

LHGG,KUJH

(3):

a: =>căn 2x-3=x-3

=>x>=3 và x^2-6x+9=2x-3

=>x>=3 và x^2-8x+12=0

=>x=6

b: =>x>=-1 và 2x^2+mx-3=x^2+2x+1

=>x>=-1 và x^2+(m-2)x-4=0

=>với mọi m thì pt luôn có hai nghiệm phân biệt lớn hơn -1 vì a*c<0

NV
4 tháng 10 2021

Giống bài trước, \(x=3+2\sqrt{2}\) là nghiệm

\(\Rightarrow y=\dfrac{mx+1}{x-m}\Rightarrow y'=\dfrac{-m^2-1}{\left(x-m\right)^2}\) nghịch biến trên miền xác định

\(\Rightarrow\max\limits_{\left[1;2\right]}y=y\left(1\right)=\dfrac{m+1}{1-m}=-2\Rightarrow m\)

18 tháng 3 2022

à bài này a nhớ (hay mất điểm ở bài này) ;v

gòi a làm hộ e hong đây .-.

Mai nộp gòi mà chưa lmj :<