tìm m để phương trình sau có nghiệm \(\sqrt{-x^2+3x-2}=\sqrt{2m+x-x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)
\(=4m^2-8m+4-8m+20\)
\(=4m^2-16m+24\)
\(=4\left(m^2-4m+6\right)>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)
Theo đề, ta có: \(\left(\sqrt{x_1}-\sqrt{x_2}\right)^2=4\)
\(\Leftrightarrow x_1+x_2-2\sqrt{x_1x_2}=4\)
\(\Leftrightarrow2m-2-2\sqrt{2m-5}=4\)
\(\Leftrightarrow2\sqrt{2m-5}=2m-6\)
\(\Leftrightarrow\sqrt{2m-5}=m-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>=3\\m^2-6m+9-2m+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=3\\m^2-8m+14=0\end{matrix}\right.\)
Đến đây thì dễ rồi, bạn chỉ cần giải pt bậc hai rồi đối chiếu với đk là xong
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
\(\sqrt{x}+\sqrt{1-x}+2m\sqrt{x\left(1-x\right)}-2\sqrt[4]{x\left(1-x\right)}=m^3\)
Phương trình có 2 nghiệm phân biệt ⇔ △ > 0
⇔ 4m2 + 20m + 25 - 8m - 4 > 0
⇔ 4m2 + 12m + 21 > 0
⇔ (2m + 3)2 + 12 > 0 ⇔ m ∈ R
Theo hệ thức Viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1.x_2=2m+1\end{matrix}\right.\)
=> P2 = (\(\left|\sqrt{x_1}-\sqrt{x_2}\right|\))2 = (\(\sqrt{x_1}-\sqrt{x_2}\))2
= x1 + x2 - 2\(\sqrt{x_1.x_2}\)
= 2m + 5 - 2\(\sqrt{2m+1}\)
= 2m + 1 - 2\(\sqrt{2m+1}\) + 1 + 3
= (\(\sqrt{2m+1}\) - 1)2 + 3 ≥ 3 ∀m
=> P ≥ \(\sqrt{3}\)
Dấu "=" xảy ra ⇔ \(\sqrt{2m+1}\) - 1 = 0 ⇔ \(\sqrt{2m+1}\)=1 ⇔ 2m + 1 = 1 ⇔ m = 0
Vậy với m = 0 thì P đạt GTNN = \(\sqrt{3}\)
ĐKXĐ: \(-2\le x\le2\)
Đặt \(\sqrt{x+2}+\sqrt{2-x}=t\Rightarrow\left\{{}\begin{matrix}2\le t\le2\sqrt{2}\\2\sqrt{-x^2+4}=t^2-4\end{matrix}\right.\)
Pt trở thành:
\(t+t^2-4+2m+3=0\)
\(\Leftrightarrow t^2+t-1=-2m\)
Xét hàm \(f\left(t\right)=t^2+t-1\) trên \(\left[2;2\sqrt{2}\right]\)
\(-\dfrac{b}{2a}=-\dfrac{1}{2}\notin\left[2;2\sqrt{2}\right]\)
\(f\left(2\right)=5\) ; \(f\left(2\sqrt{2}\right)=7+2\sqrt{2}\)
\(\Rightarrow5\le-2m\le7+2\sqrt[]{2}\)
\(\Rightarrow-\dfrac{7+2\sqrt{2}}{2}\le m\le-\dfrac{5}{2}\)
Có đúng 1 giá trị nguyên của m thỏa mãn là \(m=-4\)
ĐKXĐ: \(1\le x\le2\)
\(-x^2+3x-2=2m+x-x^2\)
\(\Leftrightarrow2x=2m+2\)
\(\Rightarrow x=m+1\)
\(\Rightarrow1\le m+1\le2\)
\(\Rightarrow0\le m\le1\)