Cho tam giác ABC cân tại A lấy M thuộc AB, N thuộc AC sao cho AM + NC = AB. gọi I, H, K lần lượt là trung điểm của MN, AB và AC. Chứng minh H, I, K thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo
a) Xét ΔAMH và ΔNMB có:
+ AM = NM
+ góc AMH = góc NMB (đối đỉnh)
+ MH = MB
=> ΔAMH = ΔNMB (c-g-c)
=> góc MAH = góc MNB
=> AH//BN
Mà AH vuông góc BC
=> BN vuông góc BC
b) Do ΔAMH = ΔNMB
=> AH = BN
Trong tam giác vuông ABH vuông tại H
=> AB > AH (cạnh huyền là cạnh lớn nhất)
=> AB > BN
c) Ta cm được ΔABM = ΔNHM (c-g-c)
=> góc BAM = góc HNM
Trong ΔANH có:NH > AH
=> góc MAH > góc MNH
=> góc MAH > góc BAM
d) Ta cm được ΔABH = ΔACH (ch-cgv)
=> BH = CH
=> CH = 2. HM
Tam giác ANC có CM là đường trung tuyến (do M là trung điểm của AN)
và CH/CM =2/3
=> H là trọng tâm của ΔANC
=> AH là đường trung tuyến
=>AH đi qua trung điểm của CN
hay A,H,I thẳng hàng
a) Ta có: AC=AN+NC=12,5
=> \(\frac{AN}{AC}=\frac{7,5}{12,5}=\frac{3}{5}=\frac{AM}{AB}\)
Theo định lí Talet => MN//BC
b) Với I là trung điểm MN , Gọi K' là giao điểm của AI và BC ta chứng minh K' trùng với K
Vì MN//BC nên ta có: \(\frac{MI}{BK'}=\frac{IN}{K'C}\left(=\frac{AI}{AK'}\right)\)
Mà MI=IN (I là trung điểm )=> BK'=K'C , K' thuộc BC => K' là trung điểm BC theo đề bài K cũng là trung điểm BC => K' trùng K
=> A, I, K thẳng hàng
Bài làm
a) Xét tam giác AMN có:
AM = AN
=> Tam giác AMN cân tại A.
b) Xét tam giác ABC cân tại A có:
\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\) (1)
Xét tam giác AMN cân tại A có:
\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => \(\widehat{B}=\widehat{M}\)
Mà hai góc này ở vị trí đồng vị.
=> MN // BC
c) Xét tam giác ABN và tam giác ACM có:
AN = AM ( gt )
\(\widehat{A}\) chung
AB = AC ( Vì tam giác ABC cân )
=> Tam giác ABN = tam giác ACM ( c.g.c )
=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )
Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)
\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)
Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )
\(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )
=> \(\widehat{IBC}=\widehat{ICB}\)
=> Tam giác BIC cân tại I
Vì MN // BC
=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )
\(\widehat{NMI}=\widehat{ICB}\)( so le trong )
Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )
=> \(\widehat{MNI}=\widehat{NMI}\)
=> Tam giác MIN cân tại I
d) Xét tam giác cân AMN có:
E là trung điểm của MN
=> AE là trung tuyến
=> AE là đường trung trực.
=> \(\widehat{AEN}=90^0\) (1)
Xét tam giác cân MNI có:
E là trung điểm MN
=> IE là đường trung tuyến
=> IE là trung trực.
=> \(\widehat{IEN}=90^0\) (2)
Cộng (1) và (2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng. (3)
Xét tam giác cân BIC có:
F là trung điểm BC
=> IF là trung tuyến
=> IF là trung trực.
=> \(\widehat{IFC}=90^0\)
Và MN // BC
Mà \(\widehat{IFC}=90^0\)
=> \(\widehat{IEN}=90^0\)
=> E,I,F thẳng hàng. (4)
Từ (3) và (4) => A,E,I,F thẳng hàng. ( đpcm )
# Học tốt #
a) Xét tam giác ADH vuông tại H và tam giác ADK vuông tại K
có: góc DAH = góc DAK (gt)
AD là cạnh chung
\(\Rightarrow\Delta ADH=\Delta ADK\left(ch-gn\right)\)
=> DH = DK ( 2 cạnh tương ứng)
b) Xét tam giác HDM vuông tại H và tam giác KDN vuông tại K
có: HD = KD ( phần a)
góc HDM = góc KDN ( đối đỉnh)
\(\Rightarrow\Delta HDM=\Delta KDN\left(cgv-gn\right)\)
=> DM = DN ( 2 cạnh tương ứng)
=> tam giác DMN cân tại D ( định lí tam giác cân)
c) Xét tam giác DMN
có: MI = NI
=> DI là đường trung tuyến của MN ( định lí đường trung tuyến) (*)
ta có: tam giác ADH = tam giác ADK ( chứng minh phần a)
=> AH = AK ( 2 cạnh tương ứng) (1)
ta có: tam giác HDM = tam giác KDN ( chứng minh phần b)
=> HM = KN ( 2 cạnh tương ứng) (2)
Từ (1);(2) => AH + HM = AK + KN
=> AM = AN
=> tam giác AMN cân tại A ( định lí tam giác cân)
mà AD là đường phân giác của góc A (gt)
=> AD là đường trung tuyến của MN ( định lí) (**)
Từ(*);(**) => A,D,I thẳng hàng
mk ko bít kẻ hình đâu! Bn kẻ hình hộ mk nhé! thanks