giải pt = cách đặt ẩn phụ
a) \(x^2+\sqrt{x+2006}=2006\)
b) \(x=\left(2004+\sqrt{x}\right)\left(1-\sqrt{1-\sqrt{x}}\right)^2\)
Làm chi tiết giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
\(\Rightarrow2x^2-6x+4=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Rightarrow\left(-2\right)\left(x+2\right)+2\left(x^2-2x+4\right)=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
Chia 2 vế cho x2 - 2x + 4 ta được:
\(\left(-2\right).\frac{x+2}{x^2-2x+4}+2=3\sqrt{\frac{x+2}{x^2-2x+4}}\)
Đặt \(a=\sqrt{\frac{x+2}{x^2-2x+4}}\left(a\ge0\right)\) ta được:
\(-2a^2-3a+2=0\Rightarrow\left(1-2a\right)\left(a+2\right)=0\Rightarrow\orbr{\begin{cases}a=\frac{1}{2}\left(n\right)\\a=-2\left(l\right)\end{cases}}\)
\(a=\frac{1}{2}\Leftrightarrow\sqrt{\frac{x+2}{x^2-2x+4}}=\frac{1}{2}\Rightarrow\frac{x+2}{x^2-2x+4}=\frac{1}{4}\)
\(\Rightarrow x^2-6x-4=0\Rightarrow\orbr{\begin{cases}x=3+\sqrt{13}\\x=3-\sqrt{13}\end{cases}}\) (cái này tính denta là ra kết quả thôi)
Vậy có 2 nghiệm trên
câu b, c tương tự thôi
câu a:
\(8x^2-6x+3-2x=\left(2x-1\right)\sqrt{8x^2-6x+3}\)
đặt \(t=\sqrt{8x^2-6x+3}\Leftrightarrow t^2=8x^2-6x+3\)phương trình trở thành
\(t^2-2x=\left(2x-1\right)t\Leftrightarrow t^2-\left(2x-1\right)t-2x=0\)
có \(\Delta=\left(2x-1\right)^2+8x=\left(2x+1\right)^2\Rightarrow\orbr{\begin{cases}t=-1\\t=2x\end{cases}}\)
Câu b:
Đặt \(t=\sqrt{x^2+1}\Leftrightarrow t^2=x^2+1\left(t>0\right)\)
PT\(\Leftrightarrow t^2-\left(x+3\right)t+3x=0\)
có :\(\Delta=\left(x+3\right)^2-4.3x=\left(x-3\right)^2\Rightarrow\orbr{\begin{cases}t=3\\t=x\end{cases}}\)
TXD x>= b, x<=a : x khác a=b
Đặt (a-x) = A, (x-b) = B
Vế phải = (a-x+x - b)/2 = (A + B)/2
2 x (A\(\sqrt[4]{B}\)+ B\(\sqrt[4]{A}\))= (A+B) (\(\sqrt[4]{A}\)+ \(\sqrt[4]{B}\))
= A\(\sqrt[4]{A}\)+ B\(\sqrt[4]{A}\)+ B\(\sqrt[4]{B}\)+A\(\sqrt[4]{B}\)
A\(\sqrt[4]{B}\)+ B\(\sqrt[4]{A}\)= A\(\sqrt[4]{A}\)+ B\(\sqrt[4]{B}\)
\(\sqrt[4]{B}\)(A-B) = \(\sqrt[4]{A}\)(A-B)
=> A = B => a-x = x-b => x = (a+b)/2 (a khác b)
a,ĐKXĐ:\(x\ge2\)
\(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\\ \Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-\dfrac{\sqrt{x-2}}{2}=26\\ \Leftrightarrow8\sqrt{x-2}+6\sqrt{x-2}-\sqrt{x-2}=52\\ \Leftrightarrow13\sqrt{x-2}=52\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)
b,ĐKXĐ:\(x\in R\)
\(3x+\sqrt{4x^2-8x+4}=1\\ \Leftrightarrow2\sqrt{x^2-2x+1}=1-3x\\ \Leftrightarrow\left|x-1\right|=\dfrac{1-3x}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1-3x}{2}\\x-1=\dfrac{3x-1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-2=1-3x\\2x-2=3x-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
c, ĐKXĐ:\(x\ge0\)
\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)=7\\ \Leftrightarrow2x+\sqrt{x}-4\sqrt{x}-2=7\\ \Leftrightarrow2x-3\sqrt{x}-9=0\\ \Leftrightarrow\left(2x+3\sqrt{x}\right)-\left(6\sqrt{x}+9\right)=0\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+3\right)-3\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\2\sqrt{x}=-3\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=9\left(tm\right)\)
a)\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow3\left(\dfrac{2x^2+1-1}{\sqrt{2x^2+1}+1}\right)-x\left(1+3x+8\sqrt{2x^2+1}\right)=0\)
\(\Leftrightarrow\dfrac{6x^2}{\sqrt{2x^2+1}+1}-x\left(1+3x+8\sqrt{2x^2+1}\right)=0\)
\(\Leftrightarrow x\left(\dfrac{6x}{\sqrt{2x^2+1}+1}-\left(1+3x+8\sqrt{2x^2+1}\right)\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\dfrac{6x}{\sqrt{2x^2+1}+1}=1+3x+8\sqrt{2x^2+1}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{2x^2+1}\\b=3x\end{matrix}\right.\left(a>0\right)\) thì
\(pt\left(2\right)\Leftrightarrow\)\(\dfrac{2b}{a+1}=1+b+8a\)
\(\Rightarrow\left\{{}\begin{matrix}a=-17\\b=120\end{matrix}\right.;\left\{{}\begin{matrix}a=-8\\b=49\end{matrix}\right.;\left\{{}\begin{matrix}a=-5\\b=26\end{matrix}\right.;\left\{{}\begin{matrix}a=-2\\b=5\end{matrix}\right.;\left\{{}\begin{matrix}a=-0\\b=1\end{matrix}\right.\) (loại vì \(a>0\))
Hay pt vô nghiệm
phần a liên hợp nhưng cx có yếu tố đặt ẩn là done r` nhé ;v còn phần b dg nghĩ có lẽ liên hợp nốt mà chủ thớt khó quá:v
c) (d tương tự)
\(\sqrt[3]{7-16x}=a;\text{ }\sqrt{2x+8}=b\Rightarrow a^3+8b^2=71\)
và \(a+2b=5\)
--> Thế
\(a\text{) }\sqrt{1-x^2}=y\Rightarrow x^2+y^2=1\)
Mà \(x^3+y^3=\sqrt{2}xy\Rightarrow\left(x^3+y^3\right)^2=2x^2y^2=2x^2y^2\left(x^2+y^2\right)\text{ (*)}\)
Tới đây có dạng đẳng cấp, có thể phân tích nhân tử hoặc chia xuống.
y = 0 thì x = 1 (không thỏa pt ban đầu)
Xét y khác 0. Chia cả 2 vế của (*) cho y6:
\(\text{(*)}\Leftrightarrow\left(\frac{x^3}{y^3}+1\right)^2=2\frac{x^2}{y^2}\left(\frac{x^2}{y^2}+1\right)\)\(\Leftrightarrow\left(\frac{x}{y}-1\right)\left[\left(\frac{x}{y}\right)^5+\left(\frac{x}{y}\right)^4+\left(\frac{x}{y}\right)^3+3\left(\frac{x}{y}\right)^2+\frac{x}{y}-1\right]=0\)
Không khả quan lắm :)) bạn tự tìm cách khác nhé.
a)√x−2+12√4x−8=√9x−18−2
=>√x−2+12√4(x−2)=√9(x−2)−2
=>√x−2+12√22(x−2)=√32(x−2)−2
=>√x−2+12.2√(x−2)=3√(x−2)−2
=>√x−2+24√(x−2)=3√(x−2)−2
=>√x−2+24√(x−2)-3√(x−2)=-2
=>√x−2(1+24-3)=-2
=>22√x−2=-2
=>√x−2=-2/22
=>√x−2=-1/11
=>x−2=1/121
=>x=1/121+2=243/121
b)√(3x−1)2=5
=>|3x−1|=5
=>3x−1=5 hoặc 3x−1=-5
=>3x=6 hoặc 3x=-4
=>x=2 hoặc x=-4/3
a/ ĐKXĐ: ...
Đặt \(\sqrt{x+2006}=a\ge0\Rightarrow a^2-x=2006\)
Pt trở thành:
\(x^2+a=a^2-x\)
\(\Leftrightarrow x^2-a^2+x+a=0\)
\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-x\\a=x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2006}=-x\left(x\le0\right)\\\sqrt{x+2006}=x+1\left(x\ge-1\right)\end{matrix}\right.\) (1)
\(\Leftrightarrow\left[{}\begin{matrix}x+2006=x^2\\x+2006=\left(x+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2006=0\\x^2+x-2005=0\end{matrix}\right.\)
Nhớ loại nghiệm của từng pt phù hợp với (1)
b/ ĐKXĐ: ...
Đặt \(\sqrt{1-\sqrt{x}}=a\Rightarrow\sqrt{x}=1-a^2\Rightarrow x=\left(1-a^2\right)^2\) (với \(0\le a\le1\))
\(\left(1-a^2\right)^2=\left(2005-a^2\right)\left(1-a\right)\)
\(\Leftrightarrow\left(1+a\right)^2\left(1-a\right)^2=\left(2005-a^2\right)\left(1-a\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\\left(1-a\right)\left(1+a\right)^2=2005-a^2\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow a^3-a+2004=0\)
Do \(0\le a\le1\Rightarrow a^3-a+2004>0\Rightarrow\) pt vô nghiệm
Vậy pt có nghiệm duy nhất \(x=0\)