Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow\hept{\begin{cases}a=bt\\c=dt\end{cases}}\).
\(\frac{ac}{bd}=\frac{bt.dt}{bd}=t^2\)
\(\frac{a^2-c^2}{b^2-d^2}=\frac{\left(bt\right)^2-\left(dt\right)^2}{b^2-d^2}=\frac{t^2\left(b^2-d^2\right)}{b^2-d^2}=t^2\)
Suy ra đpcm.
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)( tính chất của dãy tỉ số bằng nhau )
Vậy ...
TL :
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
=> Vế trái \(=\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\)
=> Vế phải \(=\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)
\(\Rightarrow\)Vế trái = Vế phải
\(\Rightarrowđpcm\)
Dễ ợt cái phần chứng minh chuyển thành \(\frac{bd}{ac}=\frac{b^2+d^2}{a^2+c^2}\)
Rồi bn tự chuyển đổi mà cm đi nha ( dễ ợt hà )
Ta có tính chất dãy tỉ
a/b = b/c = c/d = a+b+c/b+c+d
=> (a+b+c/b+c+d)3=(a+b+c/b+c+d)+(a+b+c/b+c+d)+(a+b+c/b+c+d)
=> (a+b+c/b+c+d)3=a/b.b/c.c/d
=> (a+b+c/b+c+d)3= a/d (đpcm)
Ta có tính chất dãy tỉ
a/b = b/c = c/d = a+b+c/b+c+d
=> (a+b+c/b+c+d)3=(a+b+c/b+c+d)+(a+b+c/b+c+d)+(a+b+c/b+c+d)
=> (a+b+c/b+c+d)3=a/b.b/c.c/d
=> (a+b+c/b+c+d)3= a/d (đpcm)
Ta có : \(\frac{a}{b}=\frac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{b}=\frac{c}{d}=\left(\frac{a}{b}\right)^2=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}=\left(\frac{c}{d}\right)^2=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\left(\text{do }\frac{a}{b}=\frac{c}{d}\right)\)
Vậy \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)