timg GTNN
\(A=\frac{x^2-2x+2007}{2000x^2}\left(x\ne0\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)
\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)
A min =\(\frac{2006}{2007}\)khi \(x-2007=0\)
\(\Leftrightarrow x=2007\)
\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)
\(A=\frac{x^2-2x.2007-2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)
\(A=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)
\(\Rightarrow Amin=\frac{2006}{2007}\)khi \(x-2007=0\)
\(\Rightarrow x=2007\)
\(P-\dfrac{2}{3}=\dfrac{x^2-6x+9}{3x^2}=\dfrac{\left(x-3\right)^2}{3x^2}\ge0\Rightarrow P\ge\dfrac{2}{3}\).
Dấu "=" xảy ra khi x = 3.
\(A=\frac{x^2-2x+2007}{2007x^2}=\frac{2006}{2007^2}+\frac{x^2-4014x+2007^2}{2007^2x^2}=\frac{2006}{2007^2}+\frac{\left(x-2007\right)^2}{2007^2x^2}\ge\frac{2006}{2007^2}\)
Dấu ''='' xảy ra \(\Leftrightarrow\) x = 2007
\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)
\(=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)
\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)
A min =\(\frac{2006}{2007}\)khi \(x-2007=0\) hay \(x=2007\)
\(D=\frac{x^{2}-2x+2018}{x^{2}}\)
\(D=\frac{x^{2}-2*x*1+1+2017}{x^{2}}\)
\(D= \frac{(x-1)^{2}+2017}{x^{2}}\)
Nhận xét: Để D Đặt GTNN thì \((x-1)^{2} + 2017\) Đạt GTNN
Mà \((x-1)^{2} \geq 0\) . Nên:
\((x-1)^{2}+2017\)\(\geq 2017\). GTNN của \((x-1)^{2}+2017=2017 \) Khi x-1=0 => x=1
Thay x=1 vào D
GTNN D=2017
\(A=\dfrac{1}{2}+\left|2x-1\right|\ge\dfrac{1}{2}\forall x\)
\(minA=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{\left|x\right|+2007}{2008}\ge\dfrac{0+2007}{2008}=\dfrac{2007}{2008}\)
\(minB=\dfrac{2007}{2008}\Leftrightarrow x=0\)
sửa lại chút nè \(A=\frac{x^2-2x+2007}{2007x^2}\)
\(=\frac{2007x^2-2x\cdot2007+2007^2}{2007x^2}\)
\(=\frac{x^2-2x\cdot2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)
\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)
Vậy \(A_{min}=\frac{2006}{2007}\)khi \(x-2007=0\Leftrightarrow x=2007\)
@ Bình ơi @ Em sai từ dòng đầu xuống dòng 2.