Tìm GTNN của biểu thức M=x4-2x3+3x2-4x-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề:
\(E=x^4-2x^3+3x^2-4x+2022\)
\(=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2\right)+2020\)
\(=\left(x^2-x\right)^2+2\left(x-1\right)^2+2020\)
Vì \(\left(x^2-x\right)^2+2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow E\ge2020\)
\(MinE=2020\Leftrightarrow\left\{{}\begin{matrix}x^2-x=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow x=1\)
Ta có p(x) + q(x)
Bậc của đa thức p ( x ) + q ( x ) = 4 x 4 + 6 x 3 - 6 x 2 + 6 x - 6 l à 4
Chọn đáp án C
+) Ta có
2 g ( x ) = 2 − x 4 + 2 x 3 − 3 x 2 + 4 x + 5 = − 2 x 4 + 4 x 3 − 6 x 2 + 8 x + 10 Ta có f ( x ) − 2 ⋅ g ( x ) = 5 x 4 + 4 x 3 − 3 x 2 + 2 x − 1 − − 2 x 4 + 4 x 3 − 6 x 2 + 8 x + 10 = 5 x 4 + 4 x 3 − 3 x 2 + 2 x − 1 + 2 x 4 − 4 x 3 + 6 x 2 − 8 x − 10 = 5 x 4 + 2 x 4 + 4 x 3 − 4 x 3 + − 3 x 2 + 6 x 2 + ( 2 x − 8 x ) − 1 − 1 = 7 x 4 + 3 x 2 − 6 x − 11
Hệ số cần tìm là -11
Chọn đáp án C
Câu E bạn xem lại đề nha
F=\(-y^2+2y-6\)
\(=-\left(y^2-2y+6\right)\)
\(=-\left(y-1\right)^2-5\)
Vì \(-\left(y-1\right)^2\le0\forall y\)
\(\Rightarrow F\le-5\forall y\)
\(MaxF=-5\Leftrightarrow y=1\)
\(F=-y^2+2y-6=-\left(y^2-2y+1\right)-5=-\left(y-1\right)^2-5\le-5\forall y\in R\\ Vậy:max_F=-5\Leftrightarrow y=1\)
Thu gọn Q(x) = 5x4 - x5 - x2 - 2x3 + 3x2 + 3x - 2x4 + 5
= -x5 + 3x4 - 2x3 + 2x2 + 3x + 5
Hệ số của x4là 3. Chọn B
`a,A(x) =2x^3 -x^4 +2x-4+3x^2 -2x^3+x^4`
`= ( 2x^3-2x^3) +(-x^4+x^4) + 2x -4+3x^2`
`= 0+0+ 2x -4+3x^2`
`= 3x^2 +2x-4`
`b, M(x)=A(x)+B(x)`
`M(x)= 3x^2 +2x-4 + x-2`
`= 3x^2 + 3x-6`
`b, N(x) = A(x) - B(x)`
`N(x)= 3x^2 +2x-4 -(x-2)`
`= 3x^2 +2x-4 -x+2`
`= 3x^2 + x -2`
`c,` Ta có :
`x-2=0`
`=> x=0+2`
`=>x=2`