Tìm min:
D= 6x2+3y2-8xy+4x-2y+8
Tìm max:
E=16x-3x2+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=16x^2-y^2-16x^2+8x=8x-y^2\\ A=8\cdot3-\left(-1\right)^2=24-1=23\\ B=64x^3-80x-64x^3-1=-80x-1\\ B=-80\cdot\dfrac{1}{5}-1=-16-1=-17\)
1.\(=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x+y\right)^2-\left(2z\right)^2\right]=5\left(x+y-2z\right)\left(x+y+2z\right)\)
2. \(=\left(-5x^2+15x\right)+\left(x-3\right)=-5x\left(x-3\right)+\left(x-3\right)=\left(1-5x\right)\left(x-3\right)\)
3. \(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)
4.\(=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\)
5. \(=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)
6. \(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\)
7. \(=\left(x^2+x\right)-\left(5x+5\right)=x\left(x+1\right)-5\left(x+1\right)=\left(x-5\right)\left(x+1\right)\)
\(1,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ 2,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ 3,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ 4,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=x^2+x+3x+3=\left(x+3\right)\left(x+1\right)\\ 6,=\left(x^2+2x+1\right)\left(x^2-2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\\ 7,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)
`-3x^2+8xy+3y^2=0`
`<=>3x^2-8xy-3y^2=0`
`<=>3x^2-9xy+xy-3y^2=0`
`<=>3x(x-3y)+y(x-3y)=0`
`<=>(x-3y)(3x+y)=0`
`<=>` $\left[ \begin{array}{l}x=3y\\3x=-y\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=3y\\x=-\dfrac{y}{3}\end{array} \right.$
Đây mới là bài giải đúng nha nãy mình ghi nhầm =="
Bạn ghi sai kết quả mà lại còn từ x,y lại sang a,b?
`-3x^2+8xy+3y^2=0`
`<=>3x^2-8xy+3y^2=0`
`<=>3x^2-9xy-xy+3y^2=0`
`<=>3x(x-3y)-y(x-3y)=0`
`<=>(x-3y)(3x-y)=0`
`<=>` $\left[ \begin{array}{l}x=3y\\3x=y\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=3y\\x=\dfrac{y}{3}\end{array} \right.$
\(a,=18x^4-24x^3+30x\\ b,=3x^2y+6xy^2+x^2-6xy^2-12y^3-2xy=3x^2y+x^2-12y^3-2xy\\ c,=-3x^2+4xy-2x\\ d,=\left(x-y\right)^2\left[4\left(x-y\right)^3+2\left(x-y\right)-3\right]:\left(x-y\right)^2\\ =4\left(x-y\right)^3+2\left(x-y\right)-3\)
a: \(=18x^4-24x^3+30x^2\)
b: \(=3x^2y+6xy^2+x^2-6xy^2-12y^3-2xy\)
\(=x^2-12y^3+3x^2y-2xy\)