K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2n+7⋮2n+1\)

\(\Leftrightarrow2n+1+6⋮2n+1\)

\(\Leftrightarrow6⋮2n+1\)

\(\Leftrightarrow2n+1\inƯ\left(6\right)=\left\{\pm1;\pm3;\pm6\right\}\)

Ta lập bảng xét giá trị 

2n+1-11-33-66
2n-20-42-75
n-10-21\(-\frac{7}{2}\)\(\frac{5}{2}\)

a) tham khảo  https://olm.vn/hoi-dap/detail/66921453823.html

b)....

AH
Akai Haruma
Giáo viên
22 tháng 12 2022

Lời giải:
a.

$2n+7\vdots n+2$

$\Rightarrow 2(n+2)+3\vdots n+2$
$\Rightarrow 3\vdots n+2$

$\Rightarrow n+2\in\left\{1;3\right\}$ (do $n+2>0$ với $n$ là số
 tự nhiên)

$\Rightarrow n\in\left\{-1;1\right\}$

Vì $n$ là số tự nhiên nên $n=1$
b.

$4n-5\vdots 2n-1$

$\Rightarrow 2(2n-1)-3\vdots 2n-1$

$\Rightarrow 3\vdots 2n-1$

$\Rightarrow 2n-1\in\left\{1;-1;3;-3\right\}$

$\Rightarrow n\in\left\{1;0; 2; -1\right\}$

Do $n$ là số tự nhiên nên $n\in\left\{1;0;2\right\}$

8 tháng 10 2017

a) (n+2) \(⋮\) (n-1)

vì (n-1)\(⋮\) (n-1)

=>(n+2)-(n-1)\(⋮\left(n-1\right)\)

=>(n+2-n+1)\(⋮\) (n-1)

=> 3\(⋮\) (n-1)

=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}

ta có bảng

n-1 -1 1 -3

3

n 0 2 -2 4
loại

vậy n\(\in\) { 0;2;4}

8 tháng 10 2017

b) \(\left(2n+7\right)⋮\left(n+1\right)\)

\(\left(n+1\right)⋮\left(n+1\right)\)

=>\(2\left(n+1\right)⋮\left(n+1\right)\)

=> \(\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)

=>\(5⋮\left(n+1\right)\)

=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

TA CÓ BẢNG

n+1 -5 -1 1 5
n -6 -2 0 4
loại loại

vậy \(n\in\left\{0;4\right\}\)

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

1 tháng 10 2016

Viết thế này dễ nhìn nefk (n+2)/(n-1) =(n-1+3)/(n-1) 
=1+3/(n-1) vì n+2 chia cho n-1 =1 dư 3/(n-1) 
để n+2 chia hết cho n-1 thì 3/(n-1) là số nguyên 
3/(n-1) nguyên khi (n-1) là Ước của 3 
khi (n-1) ∈ {±1 ; ±3} 
xét TH thôi : 
n-1=1 =>n=2 (tm) 
n-1=-1=>n=0 (tm) 
n-1=3=>n=4 (tm) 
n-1=-3=>n=-2 (loại) vì n ∈N 
Vậy tại n={0;2;4) thì n+2 chia hết cho n-1 
--------------------------------------... 
b, (2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(... 
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên 
khi n+1 ∈ Ước của 5 
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1 
vậy n+1 ∈ {1;5} 
Xét TH 
n+1=1=>n=0 (tm) 
n+1=5>n=4(tm) 
Vâyj tại n={0;4) thì 2n+7 chia hêt scho n+1 

d))Vì 3n chia hết cho 5-2n 
=>2.3n+3(5-2n)=15 chia hết cho 5-2n 
=>5-2n thuộc Ư(15)={±1;±3;±5;±15} 
Mặt khác:5-2n≤5(do n≥0) 
=>5-2n thuộc {-15;-5;-3;-1;1;3;5} 
=>n thuộc {10;5;4;3;2;1;0} 
)Vì 3n chia hết cho 5-2n 
=>2.3n+3(5-2n)=15 chia hết cho 5-2n 
=>5-2n thuộc Ư(15)={±1;±3;±5;±15} 
Mặt khác:5-2n≤5(do n≥0) 
=>5-2n thuộc {-15;-5;-3;-1;1;3;5} 
=>n thuộc {10;5;4;3;2;1;0} 

1 tháng 10 2016

bạn có thể làm theo cách khác ko vì mình chưa học tới số nguyên hay ước và bội

a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{0;-1;1;-2\right\}\)

b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)

\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;1;5;-2\right\}\)

d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{1;0;3;-2\right\}\)

17 tháng 8 2016

a) n + 2 chia hết cho n - 1

=> n - 1 + 3 chia hết cho n - 1

Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1

Mà n thuộc N => n - 1 > hoặc = -1

=> n - 1 thuộc {-1 ; 1 ; 3}

=> n thuộc {0 ; 2 ; 4}

Những câu còn lại lm tương tự

17 tháng 8 2016

Giải:

a) \(n+2⋮n-1\)

\(\Rightarrow\left(n-1\right)+3⋮n-1\)

\(\Rightarrow3⋮n-1\)

\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)

+) \(n-1=1\Rightarrow n=2\)

+) \(n-1=-1\Rightarrow n=0\)

+) \(n-1=3\Rightarrow n=4\)

+) \(n-1=-3\Rightarrow n=-2\)

Vậy \(n\in\left\{2;0;4;-2\right\}\)

b) \(2n+7⋮n+1\)

\(\Rightarrow\left(2n+2\right)+5⋮n+1\)

\(\Rightarrow2\left(n+1\right)+5⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)

+) \(n+1=1\Rightarrow n=0\)

+) \(n+1=-1\Rightarrow n=-2\)

+) \(n+1=3\Rightarrow n=2\)

+) \(n+1=-3\Rightarrow n=-4\)

Vậy \(n\in\left\{0;-2;2;-4\right\}\)

5 tháng 7 2018

Vì 3 n chia hết cho (5-2n)

=>2.3n+3(5-2n)=15 chia hết cho 5-2n

=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}

Mặt khác 5-2n nhỏ hơn hoặc bằng 5

5-2n thuộc {-15,-5,-3,-1,1,3,5}

=>N thuộc { 10,5,4,3,2,1,0}

Vì 3n chia hết cho 5-2n

=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n

=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}

Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5

=>5-2n€{-15,-5,-3,-1,1,3,5}

=>N€{10,5,4,3,2,1,0}