K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

Đề bài yêu cầu gì?

21 tháng 3 2017

17 tháng 9 2021

Bn tham khảo tại đây nha:

https://hoc24.vn/cau-hoi/cho-hinh-thang-abcdabcd-cmr-neu-acbcadbd-thi-hinh-thang-abcd-la-hinh-thang-can.88595065587

17 tháng 9 2021

bn giải thích cho mik tại sao:  △ABD=△BAC(c−g−c)

12 tháng 9 2017

Bài 1: △ABD=△BAC(c−g−c)△ABD=△BAC(c−g−c)

=>AC=BD=>AC=BD

△ACD=△BDC(c−c−c)△ACD=△BDC(c−c−c)

=>ADCˆ=BCDˆ=>ADC^=BCD^

Mà ADCˆ+DABˆ+ABCˆ+BCDˆ=360oADC^+DAB^+ABC^+BCD^=360o

=>2(DABˆ+ADCˆ)=360o=>2(DAB^+ADC^)=360o

=>DABˆ+ADCˆ=180o=>DAB^+ADC^=180o

=>AB//CD=>AB//CD

=>ABCD=>ABCD là hình thang mà có 2 góc ở đáy bằng nhau nên lf thang cân :D
Bài 4: chắc mấy bạn ở dưới vẽ sai hình :3 -_-

hình vẽ chính xác là ta vẽ được một hình thang cân với AD//BCAD//BC sẽ có được đầy đủ điều kiện đề bài đưa ra :D

Giải:

△ADB=△DAC△ADB=△DAC (c-c-c)

=>DABˆ=ADCˆ=>DAB^=ADC^

Từ đây chứng minh như câu 1 là =>đpcm :))

23 tháng 11 2021

C

23 tháng 11 2021

Cho hình thang cân ABCD (AB // CD). Chọn câu đúng.

A. AD > BC             B. AD < BC              C. AD = BC                 D. AD // BC

14 tháng 6 2021

từ A hạ \(AE\perp DC\)

từ B hạ \(BF\perp DC\)

\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật

\(=>AB=EF=2cm\)

vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)

mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)

\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)

xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)

\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)

15 tháng 6 2021

cảm ơn cậu

 

24 tháng 7 2015

Chứng minh chi bạn ? Nó là dấu hiệu nhận biết hình thang cân luôn rồi mà ?

27 tháng 6 2021

a, do CC' là chiều cao \(=>CC'\perp AD\)

theo giả thiết \(AD=10cm=>AD^2=100cm\)

mà \(AC=8cm,DC=6cm=>AC^2+DC^2=100cm\)

\(=>AC^2+CD^2=AD^2\)=>\(\Delta ADC\) vuông tại C(pytago đảo)

áp dụng hệ thức lượng\(CC'.AD=AC.CD=>CC'=\dfrac{8.6}{10}=4,8cm\)

b,theo t/c hình thang cân \(=>\left\{{}\begin{matrix}AB=CD=6cm\\AC=BD=8cm\end{matrix}\right.\)

hạ thêm \(BE\perp AD\)

áp dụng hệ thức lượng\(=>\left\{{}\begin{matrix}C'D=\dfrac{CD^2}{AD}\\AE=\dfrac{AB^2}{AD}\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}C'D=\dfrac{6^2}{10}=3,6cm\\AE=\dfrac{6^2}{10}=3,6cm\end{matrix}\right.\)

\(=>EC'=AD-AE-C'D=10-3,6-3,6=2,8cm\)

ta chứng minh được \(BEC'C\) là hình chữ nhật\(=>EC'=BC=2,8cm\)

\(S\left(ABCD\right)=\dfrac{1}{2}.\left(AD+BC\right).CC'=\dfrac{1}{2}\left(10+2,8\right).4,830,72cm^2\)

 

27 tháng 6 2021

đoạn cuối ấy tôi viết vôi quá

\(S\left(ABCD\right)=\dfrac{1}{2}\left(AD+BC\right).CC'=\dfrac{1}{2}\left(10+2,8\right).4,8=30,72cm^2\)