K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 11 2019

\(log_{2019}2020=\frac{ln2020}{ln2019}=\frac{ln2019\left(1+\frac{1}{2019}\right)}{ln2019}=1+\frac{ln\left(1+\frac{1}{2019}\right)}{ln2019}\)

Tương tự: \(log_{2020}2021=1+\frac{ln\left(1+\frac{1}{2020}\right)}{ln2020}\)

Ta có:

\(\frac{1}{2019}>\frac{1}{2020}\Rightarrow ln\left(1+\frac{1}{2019}\right)>ln\left(1+\frac{1}{2020}\right)>0\) (1)

\(2019< 2020\Rightarrow ln2019< ln2020\Rightarrow\frac{1}{ln2019}>\frac{1}{ln2020}>0\) (2)

Nhân vế với vế của (1) và (2):

\(\Rightarrow\frac{ln\left(1+\frac{1}{2019}\right)}{ln2019}>\frac{ln\left(1+\frac{1}{2020}\right)}{ln2020}\)

\(\Rightarrow log_{2019}2020>log_{2020}2021\)

NV
12 tháng 1

\(log_{a^4}b^4.log_ba^5=\dfrac{1}{4}.4.log_ab.5.log_ba=5.log_ab.log_ba=5\)

\(log_{a^3}b^2.log_ba^4=\dfrac{1}{3}.2.log_ab.4.log_ba=\dfrac{8}{3}.log_ab.log_ba=\dfrac{8}{3}\)

\(log_{a^{15}}b^7.log_{b^{49}}a^{30}=\dfrac{1}{15}.7.log_ab.\dfrac{1}{49}.30.log_ba=\dfrac{2}{7}log_ab.log_ba=\dfrac{2}{7}\)

\(log_{a^{2021}}b^{2020}.log_{b^{4040}}a^{6063}=\dfrac{1}{2021}.2020.log_ab.\dfrac{1}{4040}.6063.log_ba=\dfrac{3}{2}\)

Tham khảo:

loading...

Giải:

Ta có: N=2019+2020/2020+2021

=>N=2019/2020+2021 + 2020/2020+2021

Vì 2019/2020 > 2019/2020+2021 ; 2020/2021 > 2020/2020+2021

=>M>N

Vậy ...

Chúc bạn học tốt!

Ta có : \(\dfrac{2019}{2020}>\dfrac{2019}{2020+2021}\)

            \(\dfrac{2020}{2021}>\dfrac{2020}{2020+2021}\)

\(\Rightarrow\dfrac{2019}{2020}+\dfrac{2020}{2021}>\dfrac{2019+2020}{2020+2021}\)

\(\Rightarrow M>N\)

24 tháng 5 2020

Ta có: \(\frac{2019}{2020}>\frac{2019}{2020+2021};\frac{2020}{2021}>\frac{2020}{2020+2021}\)

=> \(\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019}{2020+2021}+\frac{2020}{2020+2021}=\frac{2019+2020}{2020+2021}\)

=> A > B.

28 tháng 12 2020

Vì 2019 + 2020 < 2019 + 2021 nên A < B

15 tháng 8 2021

\(\dfrac{-2019}{2019}=-1\)

\(\dfrac{-2021}{2020}=-1,004\)

\(\Rightarrow\dfrac{-2019}{2019}>\dfrac{-2021}{2020}\)

15 tháng 8 2021

có cách nào khác ko ạ

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:
$A=1-\frac{1}{2019}+1-\frac{1}{2020}+1-\frac{1}{2021}+1+\frac{3}{2018}$

$=4+(\frac{1}{2018}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2020}+\frac{1}{2018}-\frac{1}{2021})$

$> 4+0+0+0+0=4$