CMR với mọi x ta có:
(x^2+2)^4+7(x^2+2)^3+5(x^2+2)^2-31x^2-92>=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xet hiệu 2a4+1-2a3-a2=a4-2a3+a2+a4-2a2+1=(a2-a)2 +(a2+1)2 >=0
đcpcm
F=x2-x+1/4+y2+4y+4+3/4
=(x-1/2)2+(y+2)2+3/4>=3/4>0 với mọi x
=>dpcm
Ta có x1x2 = -1
=> x1 = -\(\frac{1}{x_2}\)
=> x1 - x2 = x1 + \(\frac{1}{x_1}\)
x1 > 0 thì
x1 + \(\frac{1}{x_1}\) >= 2\(\sqrt{x_1\frac{1}{x_1}}\)= 2
x1 < 0 thì
x1 + \(\frac{1}{x_1}\) <= -2\(\sqrt{x_1\frac{1}{x_1}}\)= -2
Vậy: |x1-x2| >= 2
Trước khi làm hình như phải cm pt có nghiệm?
( a = 1, b = -m, c = -1)
\(\Delta=b^2-4ac\)
\(=\left(-m\right)^2-4.1.\left(-1\right)\)
\(=m^2+4>0\forall m\)
Vậy pt luôn có 2 nghiệm pb với mọi m
Rình mãi ms được 1 câu!
Bài 3:
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
Đặt \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(A=\left[\left(x+1\right).\left(x+7\right)\right].\left[\left(x+3\right).\left(x+5\right)\right]+15\)
\(A=\left(x^2+7x+x+7\right).\left(x^2+5x+3x+15\right)+15\)
\(A=\left(x^2+8x+7\right).\left(x^2+8x+15\right)+15\)
Đặt \(t=x^2+8x+7\Rightarrow t+8=x^2+8x+15\)
\(\Rightarrow A=t.\left(t+8\right)+15\)
\(A=t^2+8t+15=t^2+3t+5t+15\)
\(A=\left(t^2+3t\right)+\left(5t+15\right)=t.\left(t+3\right)+5.\left(t+3\right)\)
\(A=\left(t+3\right).\left(t+5\right)\)
Vì \(t=x^2+8x+7\) nên
\(A=\left(x^2+8x+7+3\right).\left(x^2+8x+7+5\right)\)
\(A=\left(x^2+8x+10\right).\left(x^2+8x+12\right)\)
\(A=\left(x^2+8x+10\right).\left(x^2+2x+6x+12\right)\)
\(A=\left(x^2+8x+10\right).\left[\left(x^2+2x\right)+\left(6x+12\right)\right]\)
\(A=\left(x^2+8x+10\right).\left[x.\left(x+2\right)+6.\left(x+2\right)\right]\)
\(A=\left(x^2+8x+10\right).\left(x+2\right).\left(x+6\right)\)
Chúc bạn học tốt!!!
x^2-x+1
=x^2-x+1/4+3/4
=(x-1/2)^2+3/4
Vì (x-1/2) lớn hơn bằng 0 với mọi x nên (x-1/2)^2+3/4>0
x2+x+1=x2+2.x.\(\frac{1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=(x+\(\frac{1}{2}\))2\(+\frac{3}{4}\)lớn hơn 0 vớimọi x
a) Ta có: x2 + 4x +5 = ( x2 + 4x + 4 ) +1 = (x+2)2 + 1 >= 1 >0 với mọi x
b) Ta có : 4x2 - 4x +2 = ( 4x2 - 4x +1 ) + 1 = (2x+1)2 > 0 với mọi x
c) Ta có : x2 - 3x +4 = [x2 - 2.(3/2)x + (9/4) ]+ (7/4) = ( x - 3/2 )2 + 7/4 >0 với mọi x
mấy câu sau lm tương tự: sử dụng hằng đẳng thức tách thành dạng một bình phương cộng vs 1 số
a) x2 + 4x + 5 = x2 + 2 . 2x + 22 + 1 = (x + 2)2 + 1\(\ge\)1 > 0
b) 4x2 - 4x + 2 = (2x)2 - 2 . 2x + 1 + 1 = (2x - 1)2 + 1\(\ge\)1 > 0
c) x2 - 3x + 4 = x2 - 2 . 1,5x + 1,52 + 1,75 = (x - 1,5)2 + 1,75 \(\ge\)1,75 > 0
d) x2 - x + 1 = x2 + 2 . 0,5x + 0,52 + 0,75 = (x + 0,5)2 + 0,75\(\ge\)0,75 > 0
e) x2 - 5x + 7 = x2 - 2 . 2,5x + 2,52 + 0,75 = (x - 2,5)2 + 0,75\(\ge\)0,75 > 0
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Đặt x2+2 =a ta có :
a4 + 7a3 + 5a2 - 31a - 30
= a4 + a3 + 6a3 + 6a2 - a2 - a -30a - 30
= (a+1)(a3+6a2-a-30)
= (a+1)(a3+5a2+a2+5a-6a-30)
=(a+1)(a+5)(a2+a-6)
=(a+1)(a+5)(a2-2a+3a-6)
=(a+1)(a+5)(a-2)(a+3)
=(x2+3)(x2+7)(x2)(x2+5)
từng nhân tử lớn hơn không riêng x2 lớn hơn hoặc bằng 0 nên ta có đa thức trên lớn hơn hoặc bằng 0