K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

\(A=4x-x^2=-\left(x^2-4x+4\right)+4\)

\(=-\left(x-2\right)^2+4\le4\)

\(maxA=4\Leftrightarrow x=2\)

25 tháng 1 2019

22 tháng 2 2019

Chọn B.

Phương pháp:

Biến đổi đẳng thức đã cho để đưa về dạng phương trình đường tròn (C) tâm I bán kính R.

Từ đó ta đưa bài toán về dạng bài tìm M x ; y ∈ C  để O M - a lớn nhất hoặc nhỏ nhất.

Xét các trường hợp xảy ra để tìm a.

Cách giải: 

A=-(x^2-4x+4-4)

=-(x-2)^2+4<=4

Dấu = xảy ra khi x=2

B=-(x^2-4x-2)

=-(x^2-4x+4-6)

=-(x-2)^2+6<=6

Dấu = xảy ra khi x=2

`#3107.101107`

`A = -x^2 + 4x - 8`

`= -(x^2 - 4x + 8)`

`= - [ (x^2 - 2*x*2 + 2^2) + 4]`

`= - [ (x - 2)^2 + 4]`

`= -(x-2)^2 - 4`

Vì `-(x - 2)^2 \le 0` `AA` `x`

`=> -(x - 2)^2 - 4 \ge 0` `AA` `x`

Vậy, GTLN của A là `-4` khi `(x - 2)^2 = 0`

`<=> x - 2 = 0`

`<=> x = 2.`

1 tháng 10 2023

A = -x² + 4x - 8 

= -(x² - 4x + 8)

= -(x² - 4x + 4 + 4)

= -[(x - 2)² + 4]

= -(x - 2)² - 4

Do (x - 2)² ≥ 0 với mọi x R

⇒ -(x - 2)² ≤ 0 với mọi x ∈ R

⇒ -(x - 2)² - 4 ≤ -4 với mọi x ∈ R

Vậy GTLN của A là -4 khi x = 2

2 tháng 10 2019

Chọn C

Hàm số y =  x 2 + x + 4 x + 1  là hàm phân thức có tập xác định là  nên nó liên tục trên [0;2], từ đó ta vận dụng quy tắc tìm giá trị lớn nhất và nhỏ nhất không cần xét dấu đạo hàm.

Ta có 

=> A = 4, a = 3.

Vậy a + A = 7.

2 tháng 6 2021

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

2 tháng 6 2021

16+5=23 :))

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tính giá trị nhỏ nhất:

\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$

Vậy $A_{\min}=-3$

Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$ 

Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$

$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$

$=(x^2+5x)^2-36\geq 0-36=-36$

Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

 

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tìm giá trị lớn nhất:

$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$

Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$

Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$

$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$

Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

 

14 tháng 10 2019

26 tháng 8 2018

Đáp án A