K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 11 2019

ĐKXĐ: ...

a/ \(\frac{sin2x}{cos2x}+\frac{cosx}{sinx}=8cos^2x\)

\(\Leftrightarrow sin2x.sinx+cos2x.cosx=8cos^2x.sinx.cos2x\)

\(\Leftrightarrow cosx=4sin2x.cos2x.cosx\)

\(\Leftrightarrow cosx=2sin4x.cosx\)

\(\Leftrightarrow cosx\left(2sin4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin4x=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

b/ \(\frac{cosx}{sinx}-\frac{sinx}{cosx}+4sin2x=\frac{1}{sinx.cosx}\)

\(\Leftrightarrow cos^2x-sin^2x+4sin2x.sinx.cosx=1\)

\(\Leftrightarrow cos2x+2sin^22x=1\)

\(\Leftrightarrow cos2x+2\left(1-cos^22x\right)=1\)

\(\Leftrightarrow-2cos^22x+cos2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
7 tháng 11 2019

1c/

\(5sinx-2=3\left(1-sinx\right)\frac{sin^2x}{1-sin^2x}\)

\(\Leftrightarrow5sinx-2=\frac{3sin^2x}{1+sinx}\)

\(\Leftrightarrow\left(5sinx-2\right)\left(1+sinx\right)=3sin^2x\)

\(\Leftrightarrow5sin^2x+3sinx-2=3sin^2x\)

\(\Leftrightarrow2sin^2x+3sinx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=...\)

Bài 2:

a/ \(\Leftrightarrow\frac{\left(m+1\right)\left(1-cos2x\right)}{2}-sin2x+cos2x=0\)

\(\Leftrightarrow2sin2x+\left(m-1\right)cos2x=m+1\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(4+\left(m-1\right)^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow4m\le4\Rightarrow m\le1\)

NV
27 tháng 8 2020

c/ ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow\frac{1}{cos^2x}=\frac{1-cos^2x+1-sin^3x}{1-sin^3x}\)

\(\Leftrightarrow\frac{1}{cos^2x}=\frac{sin^2x}{1-sin^3x}+1\)

\(\Leftrightarrow\frac{1}{cos^2x}-1=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\frac{1-cos^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\frac{sin^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\cos^2x=1-sin^3x\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow1-sin^2x=1-sin^3x\)

\(\Leftrightarrow sin^3x-sin^2x=0\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=1\left(l\right)\end{matrix}\right.\)

NV
27 tháng 8 2020

b/ ĐKXĐ: \(x\ne\frac{k\pi}{2}\)

\(\Leftrightarrow\frac{sin2x.sinx+cos2x.cosx}{sinx.cosx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}\)

\(\Leftrightarrow\frac{cos\left(2x-x\right)}{sinx.cosx}=\frac{sin^2x-cos^2x}{sinx.cosx}\)

\(\Leftrightarrow cosx=sin^2x-cos^2x\)

\(\Leftrightarrow cosx=1-2cos^2x\)

\(\Leftrightarrow2cos^2x+cosx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(l\right)\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{\pi}{3}+k2\pi\)

19 tháng 9 2017

hộ vs ae ơi

NV
25 tháng 7 2020

d/

ĐKXĐ: ...

\(\Leftrightarrow tanx-1+cos2x=0\)

\(\Leftrightarrow\frac{sinx}{cosx}-1-\left(sin^2x-cos^2x\right)=0\)

\(\Leftrightarrow\frac{sinx-cosx}{cosx}-\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(\frac{1}{cosx}-sinx-cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\\frac{1}{cosx}-sinx-cosx=0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\)

\(\Rightarrow x-\frac{\pi}{4}=k\pi\Rightarrow x=\frac{\pi}{4}+k\pi\)

\(\left(2\right)\Leftrightarrow1-sinx.cosx-cos^2x=0\)

\(\Leftrightarrow sin^2x-sinx.cosx=0\)

\(\Leftrightarrow sinx\left(sinx-cosx\right)=0\)

\(\Leftrightarrow sinx=0\Rightarrow x=k\pi\)

NV
25 tháng 7 2020

c/

\(\Leftrightarrow sinx.cos2x-sinx+1-cos2x=0\)

\(\Leftrightarrow sinx\left(cos2x-1\right)-\left(cos2x-1\right)=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(cos2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\cos2x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\2x=k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=k\pi\end{matrix}\right.\)

29 tháng 4 2019

xét vế phải

( cosa+1-sina)^2

= cos^2 +1+ sin^2+2cosa-2sina-2sinacosa

= 2( 1+ cosa-sina-sinacosa)

= 2( 1-sina) ( 1+cosa)

NV
19 tháng 7 2020

c/

\(\Leftrightarrow2sinx.cosx-2\sqrt{3}cos^2x=0\)

\(\Leftrightarrow2cosx\left(sinx-\sqrt{3}cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx-\sqrt{3}cosx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\sinx=\sqrt{3}cosx\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\frac{sinx}{cosx}=\sqrt{3}\Leftrightarrow tanx=\sqrt{3}\)

\(\Rightarrow x=\frac{\pi}{3}+k\pi\)

d/

\(\Leftrightarrow tan\left(3x-50^0\right)=-cot\left(x-30^0\right)\)

\(\Leftrightarrow tan\left(3x-50^0\right)=tan\left(x+60^0\right)\)

\(\Rightarrow3x-50^0=x+60^0+k180^0\)

\(\Rightarrow x=55^0+k90^0\)

NV
19 tháng 7 2020

a/

\(\Leftrightarrow sinx=2cosx\)

Nhận thấy \(cosx=0\) không phải nghiệm, pt tương đương:

\(\frac{sinx}{cosx}=2\Leftrightarrow tanx=2\)

\(\Leftrightarrow tanx=tana\) (với \(a\in\left(0;\frac{\pi}{2}\right)\) sao cho \(tana=2\))

\(\Rightarrow x=a+k\pi\)

b/

\(tan2x=cotx=tan\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow2x=\frac{\pi}{2}-x+k\pi\)

\(\Rightarrow x=\frac{\pi}{6}+\frac{k\pi}{3}\)

16 tháng 10 2023

a: \(VT=\dfrac{cot^2x}{1+cot^2x}\cdot\dfrac{1+tan^2x}{tan^2x}\)

\(=\dfrac{cot^2x}{\dfrac{1}{sin^2x}}\cdot\dfrac{\dfrac{1}{cos^2x}}{tan^2x}\)

\(=\dfrac{cot^2x}{tan^2x}\cdot\dfrac{1}{cos^2x}:\dfrac{1}{sin^2x}\)

\(=\dfrac{cot^2x}{tan^2x}\cdot\dfrac{sin^2x}{cos^2x}\)

\(=cot^2x\)

\(VP=\dfrac{tan^2x+cot^2x}{1+tan^4x}=\dfrac{\dfrac{sin^2x}{cos^2x}+\dfrac{cos^2x}{sin^2x}}{1+\dfrac{sin^4x}{cos^4x}}\)

\(=\dfrac{sin^4x+cos^4x}{sin^2x\cdot cos^2x}:\dfrac{cos^4x+sin^4x}{cos^4x}\)

\(=\dfrac{sin^4x+cos^4x}{sin^2x\cdot cos^2x}\cdot\dfrac{cos^4x}{cos^4x+sin^4x}=\dfrac{cos^2x}{sin^2x}=cot^2x\)

=>VT=VP

b:

\(\dfrac{tan^2x-cos^2x}{sin^2x}+\dfrac{cot^2x-sin^2x}{cos^2x}\)

\(=\dfrac{\left(\dfrac{sinx}{cosx}\right)^2-cos^2x}{sin^2x}+\dfrac{\left(\dfrac{cosx}{sinx}\right)^2-sin^2x}{cos^2x}\)

\(=\dfrac{sin^2x-cos^4x}{cos^2x\cdot sin^2x}+\dfrac{cos^2x-sin^4x}{sin^2x\cdot cos^2x}\)

\(=\dfrac{sin^2x+cos^2x-cos^4x-sin^4x}{cos^2x\cdot sin^2x}\)

\(=\dfrac{1-\left(cos^2x+sin^2x\right)^2+2\cdot cos^2x\cdot sin^2x}{cos^2x\cdot sin^2x}\)

\(=\dfrac{2\cdot cos^2x\cdot sin^2x}{cos^2x\cdot sin^2x}=2\)