Cho hình thoi ABCD, lấy E trên BC, F trên CD, sao cho BE = BF. Gọi I,K theo thứ tự là giao điểm của AE;AF với đường chéo BD. Chứng minh rằng : AICK là hình thoi .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCD là hình thoi
=>AC vuông góc BD tại trung điểm của mỗi đường và BD là phân giác của góc ABC
Xét ΔADF và ΔABE có
AD=AB
\(\widehat{ADF}=\widehat{ABE}\)
DF=BE
Do đó: ΔADF=ΔABE
=>AF=AE và \(\widehat{AFD}=\widehat{AEB}\)
Xét ΔHFD và ΔGEB có
\(\widehat{HFD}=\widehat{GEB};\widehat{FDH}=\widehat{EBG}\left(=\widehat{ABD}\right)\)
DF=BE
Do đó: ΔHFD=ΔGEB
=>HF=GE và DH=BG
AH+HF=AF
AG+GE=AE
mà HF=GE và AF=AE
nên AH=AG
Xét ΔCDH và ΔABG có
CD=AB
\(\widehat{CDH}=\widehat{ABG}\)
DH=BG
Do đó: ΔCDH=ΔABG
=>CH=AG
Xét ΔADH và ΔCBG có
AD=CB
\(\widehat{ADH}=\widehat{CBG}\)
DH=BG
Do đó: ΔADH=ΔCBG
=>AH=CG
Xét tứ giác AGCH có
AG=CH
AH=CG
Do đó: AGCH là hình bình hành
mà AC vuông góc GH
nên AGCH là hình thoi
a: Xét ΔABF vuông tại B và ΔADE vuông tại D có
AB=AD
BF=DE
Do đó: ΔABF=ΔADE
=>\(\widehat{BAF}=\widehat{DAE}\)
mà \(\widehat{DAE}+\widehat{EAB}=90^0\)
nên \(\widehat{BAF}+\widehat{BAE}=90^0\)
=>\(\widehat{FAE}=90^0\)
Ta có: ΔABF=ΔADE
=>AF=AE
Xét ΔAFE có AF=AE và \(\widehat{FAE}=90^0\)
nên ΔAFE vuông cân tại A
b: Bạn ghi lại đề đi bạn