K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2019

Ta có: \(\sqrt{8}< \sqrt{9}\)và \(\sqrt{4}< \sqrt{5}\)

\(\Rightarrow\sqrt{8}-\sqrt{5}< \sqrt{9}-\sqrt{4}\)

\(=3-2=1\)

Vậy \(\sqrt{8}-\sqrt{5}< 1\)

11:

a: Số cần tìm là 3;2;1;0

b: 0

10:

\(2\dfrac{1}{2}=2.5>2.25\)

\(6>5\)

nên căn 6>căn 5

-căn 5<0

0<căn 5

=>-căn 5<căn 5

 

9 tháng 6 2023

mk đag cần gấp , giúp mk vs ạ !

a: 6>căn 5
=>6+2>2+căn 5

=>8>2+căn 5

b: căn 2>1

=>1+căn 2>2

16 tháng 12 2023

a) \(A=\sqrt{18}.\sqrt{2}-\sqrt{48}:\sqrt{3}=\sqrt{18.2}-\sqrt{48:3}\)

\(=\sqrt{36}-\sqrt{16}=6-4=2\)

b) \(B=\dfrac{8}{\sqrt{5}-1}+\dfrac{8}{\sqrt{5}+1}=\dfrac{8\sqrt{5}+8+8\sqrt{5}-8}{\left(\sqrt{5}-1\right).\left(\sqrt{5}+1\right)}=\dfrac{16\sqrt{5}}{4}=4\sqrt{5}\)

24 tháng 6 2021

`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`

`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`

`=root{3}{4(1-sqrt3)(1+sqrt3)}`

`=root{3}{4(1-3)}=-2`

`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`

`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`

`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`

`=root{3}{9}`

24 tháng 6 2021

`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`

`=root{3}{(8sqrt5-16)(8sqrt5+16)}`

`=root{3}{320-256}`

`=root{3}{64}=4`

`b)root{3}{7-5sqrt2}-root{6}{8}`

`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`

`=root{3}{(1-sqrt2)^3}-sqrt2`

`=1-sqrt2-sqrt2=1-2sqrt2`

 

NV
27 tháng 7 2021

a.

\(=\sqrt{\sqrt{5}-2}-\sqrt{5\left(\sqrt{5}+2\right)}+2\sqrt{\sqrt{5}+2}\)

\(=\sqrt{\sqrt{5}-2}-\sqrt{\sqrt{5}+2}\left(\sqrt{5}-2\right)\)

\(=\sqrt{\sqrt{5}-2}-\sqrt{\sqrt{5}-2}\left(\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\right)\)

\(=\sqrt{\sqrt{5}-2}-\sqrt{\sqrt{5}-2}.1=0\)

b.

\(=\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}-\sqrt{2\left(\sqrt{2}+1\right)}\)

\(=\sqrt{\sqrt{2}-1}-\left(\sqrt{2}-1\right)\left(\sqrt{\sqrt{2}+1}\right)\)

\(=\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}-1}.\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

\(=\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}-1}=0\)

18 tháng 10 2021

\(a,Sửa:\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\\ =\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8\left(1+\sqrt{5}\right)}{-4}\\ =2\sqrt{5}-2-2\sqrt{5}=-2\\ b,=\dfrac{\sqrt{32}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\\ =\dfrac{\sqrt{2}\left(4-\sqrt{6}\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}-\dfrac{1}{\sqrt{6}}=\dfrac{\sqrt{6}}{3}-\dfrac{\sqrt{6}}{6}=\dfrac{2\sqrt{6}-\sqrt{6}}{6}=\dfrac{\sqrt{6}}{6}\)

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

Bài 1:
a.

\(\frac{1}{2\sqrt{2}-3\sqrt{3}}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2}-3\sqrt{3})(2\sqrt{2}+3\sqrt{3})}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2})^2-(3\sqrt{3})^2}=\frac{2\sqrt{2}+3\sqrt{3}}{-19}\)

b.

\(=\sqrt{\frac{(3-\sqrt{5})^2}{(3-\sqrt{5})(3+\sqrt{5})}}=\sqrt{\frac{(3-\sqrt{5})^2}{3^2-5}}=\sqrt{\frac{(3-\sqrt{5})^2}{4}}=\sqrt{(\frac{3-\sqrt{5}}{2})^2}=|\frac{3-\sqrt{5}}{2}|=\frac{3-\sqrt{5}}{2}\)

 

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

Bài 2.

a. 

\(=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{2\sqrt{2}(\sqrt{5}+\sqrt{3})}{5-3}=\sqrt{2}(\sqrt{5}+\sqrt{3})=\sqrt{10}+\sqrt{6}\)

b.

\(=\sqrt{\frac{(2-\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})}}=\sqrt{\frac{(2-\sqrt{3})^2}{2^2-3}}=\sqrt{(2-\sqrt{3})^2}=|2-\sqrt{3}|=2-\sqrt{3}\)

Bài 2: 

a) \(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\)

b) \(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\)

c) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)

\(=\dfrac{\left(3+\sqrt{3}\right)^2+\left(3-\sqrt{3}\right)^2}{6}\)

\(=\dfrac{12+6\sqrt{3}+12-6\sqrt{3}}{6}=4\)

 

Bài 1: 

a) Đúng

b) Sai vì \(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)

c) Sai vì \(\dfrac{2}{\sqrt{3}-1}=\sqrt{3}+1\)

e) Đúng

17 tháng 6 2019

a)\(1+\sqrt{3}>1+\sqrt{1}=1+1=2\)

Vậy \(1+\sqrt{3}>2\)

c) \(\sqrt{3}-1< \sqrt{4}-1=2-1=1\)

Vậy \(\sqrt{3}-1< 1\)

e) \(\sqrt{2}+\sqrt{5}< \sqrt{16}+\sqrt{16}=4+4=8\)

Vậy \(\sqrt{2}+\sqrt{5}< 8\)

31 tháng 10 2021

a) \(\Leftrightarrow A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)

b) \(\Leftrightarrow B=\sqrt{7-2\sqrt{12}}+\sqrt{12+2\sqrt{27}}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}=2-\sqrt{3}+3+\sqrt{3}=5\)

c) \(\Leftrightarrow C=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{6}{4}=\dfrac{3}{2}\)

d) \(\Leftrightarrow D=3-\left(-2\right)-5=0\)