Cho \(\Delta ABC\) có AC > AB. BH, CK là 2 đường cao của \(\Delta ABC\). CMR BH < CK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé( đang dùng máy tính nên lười)
Có \(\Delta AHB\sim\Delta AKC\)
\(\Rightarrow\widehat{ABH}=\widehat{ACK}\Rightarrow\)cos \(\widehat{ABH}\)= cos\(\widehat{ACK}\) (1)
Xét \(\Delta AHB\) có\(\widehat{AHB}=90^0\)
\(\Rightarrow cos\widehat{ABH}.AB=BH\) (2)
Tương tự \(\Rightarrow cos\widehat{ACK}.AC=CK\) (3)
Có AB>AC (4)
Từ (1),(2),(3),(4)\(\Rightarrow BH>CK\)
SABC=\(\frac{AC.BH}{2}\)=\(\frac{AB.CK}{2}\)
=>AC.BH=AB.CK(1)
Vì tam giác ABC có Góc B>A=>Ac>AB(2)(góc vá cạnh đối diện)
Từ 1,2 =>BH<CK
Ta có: \(\left(AC+BH\right)^2=AC^2+BH^2+2AC.BH\)
\(\left(AB+CK\right)^2=AB^2+CK^2+2AB.CK\)
Ta dễ thấy do AB < AC nên BH < CK
Vậy thì \(\left(AC+BH\right)^2-\left(AB+CK\right)^2=AC^2-CK^2-\left(AB^2-BH^2\right)\)
\(=AK^2-AH^2>0\)
\(\Rightarrow\left(AC+BH\right)^2>\left(AB+CK\right)^2\)
\(\Rightarrow AC+BH>AB+CK\)
\(\Rightarrow AC-AB>CK-BH\)
đoạn AB lon hon nha ban
đầu bài đúng!
SABC=BH.AC/2 SABC=CK.AB/2 Suy ra BH.AC=CK.AB => AC/AB=CK/BH.
Do AC>AB nên AC/AB>1 dẫn tới CK/BH>1
Kết luận: CK>BH (đpcm)