K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : 

\(a+b=1\Rightarrow\left(a+b\right)^2=1\)

Mà \(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\Rightarrow a^2+2ab+b^2=1\left(1\right)\)

Ta lại có :

\(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\left(2\right)\)

Ta đi cộng vế ( 1 ) và vế ( 2 ) , ta được :

\(2\left(a^2+b^2\right)\ge1\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)

Ta có :

\((a^2+b^2)^2=a^4+2a^2b^2+b^4=\frac{1}{4}\left(3\right)\)

 \(\left(a^2-b^2\right)^2\ge0\Leftrightarrow a^4-2a^2b^2+b^4\ge0\left(4\right)\)

Cộng tiếp đẳng thức ( 3 ); ( 4 ) , ta lại được :

\(2\left(a^4+b^4\right)\ge\frac{1}{4}\Rightarrow a^4+b^4\ge\frac{1}{8}\)

Vậy ..................

1 tháng 1 2017

Giá trị nhỏ nhất là:1

24 tháng 3 2020

a/ Vì lx-7l > hoặc =0 nên lx-7l-1>hoặc=-1

Vậy A nhỏ nhất=-1

=>lx-7l=0

=>x=7

b/Vì l2x+4l>0 nên -l2x+4l<0

nên -l2x+4l+3<3 

=> B lớn nhất =3

=>x=-2

19 tháng 7 2020

a, \(A=\left|x-7\right|\ge0\)

\(\Rightarrow\left|x-7\right|-1\ge-1\)

Dấu ''='' xảy ra <=> x - 7 = 0 <=> x = 7

Vậy minA là -1 tại x = 7

b, \(B=\left|2x+4\right|\ge0\)Mà \(-\left|2x+4\right|< 0\)

\(\Rightarrow-\left|2x+4\right|+3\ge3\)

Dấu ''='' xảy ra <=> 2x + 4 = 0 <=> 2x = -4 <=> x = -2 

Vậy maxB là 3 tại x = -2 

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\). 2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:\(M=\left(a-b\right)\left(a+b-1\right)\). 3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).1)i, Chứng minh rằng không có giá trị nào...
Đọc tiếp

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).

 

2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:

\(M=\left(a-b\right)\left(a+b-1\right)\).

 

3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\)\(OF=b\)\(EF=c\) và \(\widehat{OEF}=\alpha\)\(\widehat{OFE}=\beta\).

1)

i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.

ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).

2)

i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .

ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).

0
AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:

a. Áp dụng BĐT Cô-si:

$x^4+9\geq 6x^2$

$y^4+9\geq 6y^2$

$\Rightarrow x^4+y^4+18\geq 6(x^2+y^2)$

$A+18\geq 36$

$A\geq 18$

Vậy GTNN của $A$ là $18$ khi $x^2=y^2=3$

b.

$(x-y)^2\geq 0$

$\Leftrightarrow x^2+y^2\geq 2xy$

$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$

$\Leftrightarrow 12\geq (x+y)^2$

$\Rightarrow B=x+y\leq \sqrt{12}$. Vậy $B$ max bằng $\sqrt{12}$ khi $x=y=\sqrt{3}$

$(x-y)^2\geq 0$

$\Leftrightarrow x^2+y^2\geq 2xy$

$\Leftrightarrow 6\geq 2C$

$\Leftrightarrow C\leq 3$. Vậy $C_{\max}=3$. Giá trị này đạt tại $x=y=-\sqrt{3}$

2:

|x+4|>=0

=>-|x+4|<=0

=>B<=11

Dấu = xảy ra khi x=-4