\(x^2-\left(2m+3\right)x+m^2+3m+2=0.\)\(\left\{x^2-\left(2m+3\right)x+\frac{\left(2m+3\right)^2}{4}\right\}=\frac{\left(2m+3\right)^2+4m^2+12m+8}{4}\)\(\left(x-\frac{2m+3}{2}\right)^2=\frac{8m^2+24m+17}{4}\)\(\Leftrightarrow\hept{\begin{cases}2x-2m+3=\sqrt{8m^2+24m+17}\\2x-2m+3=-\sqrt{8m^2+24m+17}\end{cases}}\)để căn có nghĩa thì\(8m^2+24m+17=\left(m^2+3m+\frac{9}{4}\right)-\frac{1}{8}\ge0\)\(\left(m+\frac{3}{2}\right)^2\ge\frac{1}{8}\) " suy ra m.....vậy pt có 2 nghiệm phân biệt...
Đọc tiếp
\(x^2-\left(2m+3\right)x+m^2+3m+2=0.\)
\(\left\{x^2-\left(2m+3\right)x+\frac{\left(2m+3\right)^2}{4}\right\}=\frac{\left(2m+3\right)^2+4m^2+12m+8}{4}\)
\(\left(x-\frac{2m+3}{2}\right)^2=\frac{8m^2+24m+17}{4}\)
\(\Leftrightarrow\hept{\begin{cases}2x-2m+3=\sqrt{8m^2+24m+17}\\2x-2m+3=-\sqrt{8m^2+24m+17}\end{cases}}\)
để căn có nghĩa thì
\(8m^2+24m+17=\left(m^2+3m+\frac{9}{4}\right)-\frac{1}{8}\ge0\)
\(\left(m+\frac{3}{2}\right)^2\ge\frac{1}{8}\) " suy ra m.....
vậy pt có 2 nghiệm phân biệt với m.....
\(\Leftrightarrow\hept{\begin{cases}x1=\frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}\\x2=-\frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}\end{cases}}\)
\(x1< -3\Leftrightarrow-3< \frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}\)
\(\Leftrightarrow m>-3-\frac{1}{2}\sqrt{8m^2+24+17}+\frac{3}{2}\)
\(x1< x2\Leftrightarrow\frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}< -\frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}\)
\(\Leftrightarrow0< -\sqrt{8m^2+24+17}\)
\(x2< 6\Leftrightarrow-\frac{1}{2}\sqrt{8m^2+24+17}+m-\frac{3}{2}< 6\)
\(\Leftrightarrow m< 6+\frac{1}{2}\sqrt{8m^2+24+17}+\frac{3}{2}\)
dcpcm =))
a) Ta có:
\(\frac{1}{2\left(m+1\right)}+\frac{1}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3m+2}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(m+1\right)\left(3m+2\right)}\)
\(+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3m+3}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3\left(m+1\right)}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3}{2\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3\left(8m+5\right)}{2\left(3m+2\right)\left(8m+5\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{24m+15}{2\left(3m+2\right)\left(8m+5\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{24m+16}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{8\left(3m+2\right)}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{8}{2\left(8m+5\right)}=\frac{4}{8m+5}\left(đpcm\right)\)
b) Ta có: \(\frac{1}{m+1}+\frac{1}{3m+2}+\frac{1}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{3m+2}{\left(m+1\right)\left(3m+2\right)}+\frac{m+1}{\left(m+1\right)\left(3m+2\right)}\)
\(+\frac{1}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{4m+4}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{4\left(m+1\right)}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{4}{3m+2}\left(đpcm\right)\)