K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2019

A B C 6 4 H  

Kẻ đường cao AH

Ta thấy :

\(\frac{BH}{AB}=cosB\Rightarrow BH=ABcosB=6cos60^o=3\left(cm\right)\)

\(\frac{AH}{AB}=sinB\Rightarrow AH=ABsinB=6sin60^o=3\sqrt{3}\left(cm\right)\)

\(CH=BC-BH=4-3=1\left(cm\right)\)

Áp dụng định lí Pitago cho tam giác vuông AHC

\(AC=\sqrt{AH^2+CH^2}=\sqrt{\left(3\sqrt{3}^2\right)+1^2}=2\sqrt{7}\left(cm\right)\)

Chúc bạn học tốt !!!

P
1 tháng 11 2019

ac đề cho r kìa :v

Bài 2: 

b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)

\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=AH\cdot\dfrac{BC}{AH}=BC\)

23 tháng 8 2023

Để tính diện tích tam giác ABC, chúng ta có thể sử dụng công thức diện tích tam giác:

Diện tích tam giác ABC = 1/2 * AB * AC * sin(A)

Với góc A = 50°50' và AB = 4cm, AC = 6cm, chúng ta có thể tính được diện tích tam giác ABC bằng cách thay các giá trị vào công thức trên.

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=\dfrac{1}{2}\cdot4\cdot6\cdot sin50\simeq9,19\left(cm^2\right)\)

Gọi O là tâm đường tròn ngoại tiếp ΔABC

Gọi H là giao của AO với BC

AB=AC

OB=OC

Do đó: AO là trung trực của BC

=>AH là trung trực của BC

=>H là trung điểm của BC

HB=HC=4/2=2cm

Kẻ giao của AO với (O) là D

=>AD là đường kính của (O)

Xét (O) có

ΔABD nội tiếp

ADlà đường kính

Do đó: ΔBAD vuông tại B

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>\(AH^2=6^2-2^2=32\)

=>\(AH=4\sqrt{2}\left(cm\right)\)

Xét ΔBAD vuông tại B có BH là đường cao

nên AB^2=AH*AD

=>\(AD=\dfrac{6^2}{4\sqrt{2}}=\dfrac{9}{\sqrt{2}}\left(cm\right)\)

=>\(R=\dfrac{AD}{2}=\dfrac{9}{2\sqrt{2}}\left(cm\right)\)

a: AC-BC<AB<AC+BC

=>5<AB<8

mà AB>6

nên AB=7cm

b: AB-AC<BC<AB+AC

=>2<BC<14

mà BC<4

nên BC=3cm

24 tháng 3 2021

\(BC=BH+HC=2+8=10\left(cm\right)\)

△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow AB^2=BC^2-AC^2=10^2-6^2=64\\ \Rightarrow AB=8\left(cm\right)\)

22 tháng 12 2021

Vì \(\Delta ABC\) vuông tại \(A\)

\(\Rightarrow\) \(AB , AC\) là hai cạnh góc vuông còn \(BC\) là cạnh huyền

Áp dụng định lý Py \(-\) ta \(-\) go vào \(\Delta ABC\) , ta có :

\(BC^2=AB^2+AC^2=3^2+4^2=9+16=25=5^2\)

\(\Rightarrow\) \(BC=5\)

Vậy \(BC = 5 cm\)

22 tháng 12 2021

\(BC=5cm\)

19 tháng 8 2021

Kẻ BH vuông góc với AC tại H.

Áp dụng hệ thức về cạnh và góc trong tam giác vuông, ta được:

\(BH=sinA\cdot AB=sin60^0.4=2\sqrt{3}\left(cm\right)\)

\(AH=cosA.AB=cos60^0.4=2\left(cm\right)\)

Suy ra BH = 3(cm).

Áp dụng định lý Py-ta-go vào tam giác BHC vuông tại H, ta được:

\(BC=\sqrt{BH^2+CH^2}=\sqrt{12+9}=\sqrt{21}\left(cm\right)\)

Vậy BC = \(\sqrt{21}\)(cm)

a: ΔBAC vuông tại B có góc A=45 độ

nên ΔBAC vuông cân tại B

=>BA=BC=2a

AC=căn AB^2+BC^2=2a*căn 2

b: BH=BA*BC/AC=4a^2/2*a*căn 2=a*căn 2

c: S ABC=1/2*2a*2a=2a^2

d: C=2a+2a+2a*căn 2=4a+2a*căn 2