Chứng minh rằng biểu thức sau luôn dương với mọi giá trị của biến:
x2+y2-4x+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Sửa:F=4x^2-12x+11=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2>0\left(đpcm\right)\)
\(x^2+y^2-4x-2\)
\(=x^2+y^2-4x+4-6\)
\(=\left(x^2-4x+4\right)+y^2-6\)
\(=\left(x-2\right)^2+y^2-6\ge-6\)
Xem lại đề nha, kết quả vẫn có thể âm mà
B = \(x^2\) - 2\(xy\) + 2y\(^2\) + 2\(x\) - 10y + 17
B = (\(x^2\) - 2\(xy\) + y2) + 2(\(x-y\)) + 1 + (y2 - 8y + 16)
B = (\(x-y\))2 + 2(\(x-y\)) + 1 + (y - 4)2
B = (\(x-y\) + 1)2 + (y - 4)2
(\(x-y+1\))2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0
B ≥ 0
Kết luận biểu thức không âm. Chứ không phải là biểu thức luôn dương em nhé. Vì dương thì biểu thức phải > 0 ∀ \(x;y\). Mà số 0 không phải là số dương.
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
Ta tách như sau: \(2x^2+8x+15=2\left(x^2+4x+4\right)+7=2\left(x+2\right)^2+7\)
Do \(\left(x+2\right)^2\ge0\Rightarrow2\left(x+2\right)^2+7\ge7>0\)
Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của biến.
\(E=2x^2+y^2-2xy-6x+12=\left(x-y\right)^2+\left(x-3\right)^2+3\ge3>0\)