chứng minh rằng với mọi STN a thì a ( a + 5 ) là số chẵn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
n(n+2021)
=n( n+1+2020)
=n(n+1) + 2020n
Vì n và n+1 là 2 số nguyên liên tiếp
\(\Rightarrow n\left(n+1\right)⋮2\)
mà 2020n cũng chia hết cho 2
=> n(n+1) + 2020n\(⋮2\)
hay n ( n + 2021 ) \(⋮2\)
hay n ( n + 2021 ) là số chẵn
Lời giải:
Nếu $n$ lẻ thì $n+7$ chẵn
$\Rightarrow (n+4)(n+7)$ chẵn
Nếu $n$ chẵn thì $n+4$ chẵn
$\Rightarrow (n+4)(n+7)$ chẵn
Vậy $(n+4)(n+7)$ luôn là số chẵn với mọi $n$
Bài giải
a) Ta có: P = (a + 3)(a - 5) + (a + 3)(a + 1) (Với a \(\inℤ\))
=> a sẽ có thể là một số lẻ hay một số chẵn
Xét a là số lẻ:
=> P = (a + 3)(a - 5 + a + 1)
=> P = (a + 3)(2a - 4)
Vì a là số lẻ nên a + 3 là số chẵn
=> P là số chãn
=> ĐPCM
Với a là số chẵn:
Vì a là số chẵn nên 2a + 4 cũng là số chãn
=> P là số chãn
=> ĐPCM
a) \(P=\left(a+3\right)\left(a-5\right)+\left(a+3\right)\left(a+1\right)=\left(a+3\right)\left(a-5+a+1\right)=\left(a+3\right)\left(2a-4\right)\)
\(=2\left(a+3\right)\left(a-2\right)\)là số chẵn.
b) \(Q=\left(a-2\right)\left(a+3\right)-\left(a+2\right)\left(3-a\right)=\left(a-2\right)\left(a+3\right)+\left(a+2\right)\left(a-3\right)\)
\(=a^2+a-6+a^2-a-6=2a^2-12=2\left(a^2-6\right)\)là số chẵn
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2
Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2
Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2
Bài 4 bạn ghi thiếu đề
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Xét nếu \(a\)lẻ \(\Rightarrow a+5\)là lẻ + lẻ = chẵn
\(\Rightarrow a\left(a+5\right)=\)lẻ . chẵn = chẵn hay \(a\left(a+5\right)⋮2\)
Xét nếu \(a\)chẵn \(\Rightarrow a+5\)là chẵn + lẻ = lẻ
\(\Rightarrow a\left(a+5\right)=\)chẵn . lẻ = chẵn hay \(a\left(a+5\right)⋮2\)
\(\Rightarrowđpcm\)