K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

a) m-m +2#0

b) m​2​ - m+2<0

C) m​2 - mm +2>0

NV
23 tháng 12 2022

Hàm nghịch biến trên R khi và chỉ khi:

\(m-2< 0\)

\(\Rightarrow m< 2\)

23 tháng 12 2022

A.2

B.m<2

C.m>2

D.m=0

30 tháng 12 2023

Bài 1:

Để hàm số y=(2-m)x-2 là hàm số bậc nhất thì 2-m<>0

=>m<>2

a=2-m

b=-2

Bài 2:

a: Để hàm số y=(m-5)x+1 đồng biến trên R thì m-5>0

=>m>5

b: Để hàm số y=(m-5)x+1 nghịch biến trên R thì m-5<0

=>m<5

Bài 3:

a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}3-m=2\\2\ne m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=1\)

b: Để (d1) cắt (d2) thì \(3-m\ne2\)

=>\(m\ne1\)

c: Để (d1) cắt (d2) tại một điểm trên trục tung thì

\(\left\{{}\begin{matrix}3-m\ne2\\m=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne1\\m=2\end{matrix}\right.\)

=>m=2

NV
30 tháng 7 2021

a.

Hàm là hàm số bậc nhất khi:

\(2m-1\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)

b.

Hàm đồng biến trên R khi:

\(2m-1>0\Leftrightarrow m>\dfrac{1}{2}\)

a) Để hàm số là hàm số bậc nhất thì \(2m-1\ne0\)

hay \(m\ne\dfrac{1}{2}\)

b) Để hàm số đồng biến thì 2m-1>0

hay \(m>\dfrac{1}{2}\)

2 tháng 12 2019

ĐK để hàm số trên là hàm bậc nhất => m-5 khác 0 => m khác 5

b) m-5>0 => hàm số đồng biến

m-5<0 => hàm số ngịch biến

3 tháng 1 2022

 \(\text{Ta có:}-m^2+m-4\\ =-\left(m^2-m+4\right)\\ =-\left[\left(m^2-m+\dfrac{1}{4}\right)+\dfrac{15}{4}\right]\\ =-\left(m-\dfrac{1}{2}\right)^2-\dfrac{15}{4}\le-\dfrac{15}{4}< 0\)

Vậy HSNB trên R

 

\(-m^2+m-4\)

\(=-\left(m^2-m+4\right)\)

\(=-\left(m^2-m+\dfrac{1}{4}+\dfrac{15}{4}\right)\)

\(=-\left(m-\dfrac{1}{2}\right)^2-\dfrac{15}{4}< 0\forall m\)

Vậy: Hàm số nghịch biến trên R

Bài 1:

a: Để (d) là hàm số bậc nhất thì 2m-2<>0

hay m<>1

b: Để (d) là hàm số đồng biến thì 2m-2>0

hay m>1

c: Hàm số (d') đồng biến vì a=4>0

Bài 2: 

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}-x+6=3x-6\\y=-x+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3\end{matrix}\right.\)

30 tháng 10 2021

) Điều kiện để hàm số xác định là m≥0m≥0; x∈Rx∈R

Để hàm số đã cho là hàm bậc nhất thì m√+3√m√+5√≠0m+3m+5≠0

Vì m−−√+3–√≥0+3–√>0m+3≥0+3>0 với mọi m≥0m≥0 nên m−−√+3–√≠0,∀m≥0m+3≠0,∀m≥0

⇒m√+3√m√+5√≠0⇒m+3m+5≠0 với mọi m≥0m≥0

Vậy hàm số là hàm bậc nhất với mọi m≥0m≥0

b)

Để hàm đã cho nghịch biến thì m√+3√m√+5√<0m+3m+5<0

Điều này hoàn toàn vô lý do {m−−√+3–√≥3–√>0m−−√+5–√≥5–√>0{m+3≥3>0m+5≥5>0

Vậy không tồn tại mm để hàm số đã cho nghịch biến trên R

Giải thích các bước giải:

30 tháng 10 2021

câu c đâu rui bạn oi

a, hàm số bậc nhất y = (m-2)x +3 đồng biến <=> m-2 > 0

                                                                         <=> m >2

b,hàm số bậc nhất  y =(m-2)x +3 nghịch biến <=> m - 2 <0

                                                                            <=> m < 2  

10 tháng 6 2021

a, Để hàm số trên đồng biến khi

\(m-2>0\Leftrightarrow m>2\)

b, Để hàm số trên nghịch biến khi 

\(m-2< 0\Leftrightarrow m< 2\)

23 tháng 11 2021

undefined