K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

Akai HarumaBăng Băng 2k6HISINOMA KINIMADO

Vũ Minh TuấnNguyễn Thanh Hằng

NV
2 tháng 4 2020

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{26x+5}=a\ge0\\\sqrt{x^2+30}=b>0\end{matrix}\right.\)

\(\Rightarrow\frac{a^2}{b}+2a=3b\)

\(\Leftrightarrow a^2+2ab-3b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+3b\right)=0\)

\(\Leftrightarrow a-b=0\)

\(\Leftrightarrow\sqrt{26x+5}=\sqrt{x^2+30}\)

\(\Leftrightarrow x^2-26x+25=0\Rightarrow\left[{}\begin{matrix}x=1\\x=25\end{matrix}\right.\)

1. \(x^3-x^2+12x\sqrt{x-1}+20=0\) 2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\) 3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\) 4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\) 5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\) 6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\) 7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\) 8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\) 9. \(x^2+6x+8=3\sqrt{x+2}\) 10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\) 11. ...
Đọc tiếp

1. \(x^3-x^2+12x\sqrt{x-1}+20=0\)

2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\)

3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)

4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\)

5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\)

6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\)

7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\)

8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)

9. \(x^2+6x+8=3\sqrt{x+2}\)

10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\)

11. \(\sqrt{x+1}+\sqrt{4-x}-\sqrt{\left(x+1\right)\left(4-x\right)}=1\)

12. \(x^2-\sqrt{x^2-4x}=4\left(x+3\right)\)

13. \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\)

15. \(\sqrt{2x^2+3x+2}+\sqrt{4x^2+6x+21}=11\)

16. \(\sqrt{x+3+3\sqrt{2x-3}}+\sqrt{x-1+\sqrt{2x-1}}=2\sqrt{2}\)

17. \(\left(x-2\right)^2\left(x-1\right)\left(x-3\right)=12\)

18. \(2x^2+\sqrt{x^2-2x-19}=4x+74\)

19. \(x^4+x^2-20=0\)

20. \(x+\sqrt{4-x^2}=2+3x\sqrt{4-x^2}\)

21. \(\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1\right)=9\)

22. \(\sqrt{x^2-3x+5}+x^2=3x+7\)

23. \(x^2+6x+5=\sqrt{x+7}\)

24. \(\frac{2x^2-3x+10}{x+2}=3\sqrt{\frac{x^2-2x+4}{x+2}}\)

25. \(5\sqrt{x-1}-\sqrt{x+7}=3x-4\)

26. \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)

27. \(\sqrt{x-1}+\sqrt{5-x}-2=2\sqrt{\left(x-1\right)\left(5-x\right)}\)

28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\)

29. \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)

30. \(\frac{\sqrt{27+x^2+x}}{2+\sqrt{5-\left(x^2+x\right)}}=\frac{\sqrt{27+2x}}{2+\sqrt{5-2x}}\)

12
20 tháng 3 2020

28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\) DK: \(x\ne3\)

PT\(\Leftrightarrow\left(x+\frac{3x}{x-3}\right)^2-6\frac{x^2}{x-3}-40=0\)\(\Leftrightarrow\frac{x^4}{\left(x-3\right)^2}-6\frac{x^2}{x-3}-40=0\)

Dat \(\frac{x^2}{x-3}=a\). PTTT \(a^2-6a-40=0\)\(\Leftrightarrow\left(a-10\right)\left(a+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=10\\a=-4\end{matrix}\right.\)

giai tiep

20 tháng 3 2020

14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\) DK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

PT\(\Leftrightarrow\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}=1\Leftrightarrow2\sqrt{x}=x-1\)\(\Leftrightarrow x-2\sqrt{x}+1=2\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{matrix}\right.\)

1 tháng 5 2020

\(\sqrt{29-x}+\sqrt{x+3}=x^2-26x+177\left(1\right)\)

ĐK -3 =<x =<29

Với mọi a,b >=0 ta có:

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge2ab\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)

Thay \(a=\sqrt{29-x};b=\sqrt{x+3}\)ta có:

\(\sqrt{29-x}+\sqrt{x+3}\le\sqrt{2\left(29-x+x+3\right)}=8\)

\(x^2-26x+177=\left(x-13\right)^2+8\ge8\)

\(\Rightarrow\sqrt{29-x}+\sqrt{x+3}\le x^2-26x+177\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{29-x}=\sqrt{x+3}\\x-13=0\end{cases}\Leftrightarrow x=13}\)

Do đó (1) <=> x=13 (tm)

NV
11 tháng 8 2020

ĐKXĐ: ...

\(VT=\sqrt{14-x}+\sqrt{x-12}\le\sqrt{2\left(14-x+x-12\right)}=2\)

\(VP=\left(x-13\right)^2+2\ge2\)

\(\Rightarrow VP\ge VT\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}14-x=x-12\\x-13=0\end{matrix}\right.\) \(\Rightarrow x=13\)

Vậy pt có nghiệm duy nhất \(x=13\)

28 tháng 11 2019

mị mới lớp 5 ahihi

29 tháng 11 2019

ĐK: \(12\le x\le14\)

Sau khi nhân liên hợp chúng ta có được:

\(PT\Leftrightarrow\left(x-13\right)^2\left[1+\frac{\frac{2}{1+\sqrt{\left(x-12\right)\left(14-x\right)}}}{2+\sqrt{x-12}+\sqrt{14-x}}\right]=0\)

\(\Leftrightarrow x=13\)

Khủng khiếp tí nhưng chắc không sao:v