K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\Rightarrow abc=1\left(TMGT\right)\)

Ta có:
\(\frac{1}{a+2}=\frac{1}{\frac{x}{y}+2}=\frac{1}{\frac{x+2y}{y}}=\frac{y}{x+2y}=\frac{y^2}{xy+2y^2}\)

Tương tự:

\(\frac{1}{b+2}=\frac{z^2}{yz+z^2};\frac{1}{c+2}=\frac{x^2}{zx+x^2}\)

Ta có:

\(\frac{x^2}{xz+2x^2}+\frac{y^2}{xy+2y^2}+\frac{z^2}{yz+2z^2}\ge\frac{\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2\right)+xy+yz+zx}\)

Mặt khác \(xy+yz+zx\le x^2+y^2+z^2\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)+xy+yz+zx\le3\left(x^2+y^2+z^2\right)\)

Rồi OK.Đến đây tịt r:( GOD nào vào thông não hộ ạ:(

1 tháng 11 2019

Sửa đề thành \(\le1\).Bài này cứ quy đồng full nha! Em có làm ở đây r: Câu hỏi của Nguyễn Linh Chi - Toán lớp 0 - Học toán với OnlineMath

12 tháng 8 2017

Sửa đề: Chứng minh \(abc\le\dfrac{1}{8}\)

Ta có

\(\dfrac{1}{1+a}=\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\)

\(=\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\) (1)

Tương tự \(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ca}{\left(1+c\right)\left(1+a\right)}}\) (2)

\(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+b\right)}}\) (3)

Nhân (1), (2), (3) với nhau:

\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow abc\le\dfrac{1}{8}\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{2}\)

12 tháng 8 2017

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)

\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)

\(\Leftrightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(1\right)\)

Tương tự:

\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\left(2\right)\)

\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\left(3\right)\)

Nhân (1),(2) và (3) theo vế:

\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Leftrightarrow1\ge8abc\Rightarrow abc\le\frac{1}{8}\)

Dấu "=" xảy ra khi a=b=c=1/2

NV
5 tháng 8 2021

\(abc=1\) nên tồn tại các số dương x;y;z sao cho \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)

BĐT cần chứng minh tương đương:

\(\dfrac{y}{x+2y}+\dfrac{z}{y+2z}+\dfrac{x}{z+2x}\le1\)

\(\Leftrightarrow\dfrac{2y}{x+2y}-1+\dfrac{2z}{y+2z}-1+\dfrac{2x}{z+2x}-1\le2-3\)

\(\Leftrightarrow\dfrac{x}{x+2y}+\dfrac{y}{y+2z}+\dfrac{z}{z+2x}\ge1\)

Điều này đúng do:

\(VT=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2yz}+\dfrac{z^2}{z^2+2xz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)

5 tháng 8 2021

e cảm ơn ạ

 

4 tháng 8 2017

Đặt \(\left\{{}\begin{matrix}x=\dfrac{1}{a}\\y=\dfrac{1}{b}\\z=\dfrac{1}{c}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\) và BĐT cần chứng minh là:

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel và AM-GM ta có:

\(VT=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}=VP\)

Xảy ra khi \(x=y=z=1 \Rightarrow a=b=c=1\)

4 tháng 8 2017

ai tick cho mik , mik tick lại cho !^__<hahanhớ giải câu hỏi nhé ! thanks

AH
Akai Haruma
Giáo viên
1 tháng 11 2019

Sửa lại đề: CMR $P=\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\leq 1$

----------------------

Lời giải:

Do $abc=1$ nên tồn tại $x,y,z>0$ sao cho $(a,b,c)=(\frac{x}{y}, \frac{y}{z}, \frac{z}{x})$

Bài toán đã cho trở thành:

Cho $x,y,z>0$. CMR $P=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}\leq 1$

Thật vậy:

$P=\frac{1}{2}(\frac{1-\frac{x}{x+2y})+\frac{1}{2}(1-\frac{y}{y+2z})+\frac{1}{2}(1-\frac{z}{z+2x})$

$=\frac{3}{2}-\frac{1}{2}\left(\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\right)(*)$

Áp dụng BĐT Cauchy-Schwarz:

$\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}=\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xz}\geq \frac{(x+y+z)^2}{x^2+2xy+y^2+2yz+z^2+2zx}=\frac{(x+y+z)^2}{(x+y+z)^2}=1(**)$

Từ $(*); (**)\Rightarrow P\leq \frac{3}{2}-\frac{1}{2}.1=1$

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$

2 tháng 11 2019

Em đã nêu hai cách giải ở đây: Câu hỏi của khiêm nguyễn xuân - Toán lớp 9 - Học toán với OnlineMath

12 tháng 8 2017

Sửa đề: Chứng minh \(abc\le\dfrac{1}{8}\)

Ta có

\(\dfrac{1}{1+a}=\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\)

\(=\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\) (1)

Tương tự \(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ca}{\left(1+c\right)\left(1+a\right)}}\) (2)

\(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+b\right)}}\) (3)

Nhân (1), (2), (3) với nhau:

\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow abc\le\dfrac{1}{8}\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{2}\)

3 tháng 5 2017

Đặt \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\) là ( 1)

Ta có : \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)

\(=\left(ab-a-b+1\right)\left(c-1\right)>0\)

\(=a+b+c-ab-bc-ca>0\)

\(=a+b+c-\dfrac{c}{ab}-\dfrac{a}{bc}-\dfrac{b}{ac}>0\)

\(\Leftrightarrow a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( 2 )

BĐT ( 2 ) đúng . Từ đây ta có thể thấy BĐt ( 1 ) cũng đúng :D

29 tháng 5 2022

\(Áp\ dụng\ BĐT\ AM - GM,\ ta\ có: \\\sum\dfrac{1}{a^2+2b^2+3}=\sum\dfrac{1}{(a^2+b^2)+(b^2+1)+2}\le\sum\dfrac{1}{2ab+2b+2} \\=\dfrac{1}{2}\sum\dfrac{1}{ab+b+1}=\dfrac{1}{2}.1=\dfrac{1}{2} \\Đẳng\ thức\ xảy\ ra\ khi\ a=b=c=1.\)

NV
5 tháng 10 2021

Đặt \(\left(a;b;c\right)=\left(\dfrac{y}{x};\dfrac{z}{y};\dfrac{x}{z}\right)\)

\(\Rightarrow VT=\dfrac{1}{\dfrac{y}{x}\left(\dfrac{z}{y}+1\right)}+\dfrac{1}{\dfrac{z}{y}\left(\dfrac{x}{z}+1\right)}+\dfrac{1}{\dfrac{x}{z}\left(\dfrac{y}{x}+1\right)}\)

\(VT=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)

\(VT\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\dfrac{3}{2}\)