chứng minh rằng
109 + 108 + 107 \(⋮\)222
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d; 109 + 108 + 107 ⋮ 555
109 + 108 + 107
= 217 + 107
= 324 < 555
109 + 108 + 107 < 555 (không thể chia hết cho 555)
e; 817 - 279 - 913 ⋮ 45
817 - 279 -913
= 538 - 913
= - 375
3 + 7 + 5 = 15 không chia hết cho 9 n ên 375 không chia hết cho 45
Đề sai rồi cậu ơi ! Không chứng minh được.
Thế này nhé : Cậu xét số số hạng ủa S được 109 số
Xét 255 bằng 8 số hạng đầu tiên cộng lại ( Từ 2^0 đến 2^7). Nhưng 109 lại không chia hết cho 8 ( nếu chia ra thì dư 5) Nếu như đã dư thì chứng tỏ là sẽ không thể nhóm được thành từng nhóm số chia hết cho 255. Vì thế nên bài này không chia hết được cũng như là đề hơi sai sót :3 Cậu xem lại nhé
Ta có:
A = \(\dfrac{10^7+5}{10^7-8}=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)
\(B=\dfrac{10^8+6}{10^8-7}=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)
Mà \(10^8-7>10^7-8\)
=> \(1+\dfrac{13}{10^7-8}>1+\dfrac{13}{10^8-7}\)
=> A < B
Vậy A < B
Xin lỗi mình kết luận sai vì nhìn nhầm. Đáp án đúng là A > B và cả quá trình trên vẫn đúng nha.
\(Ta\) \(có\) : \(222\equiv1\left(mod13\right)\) nên \(222^{333}\equiv1\left(mod13\right)\)
\(và\) \(333^2\equiv-1\left(mod13\right)\) nên \(333^{222}\equiv-1\left(mod13\right)\)
\(cộng\) \(lại\) \(ta\) \(có\) : \(222^{333}+333^{222}\equiv0\left(mod13\right)\) \(đpcm\)
Ta có : 109 + 108 + 107 = 107. (102+10+1)
= (2.5)7.111
= 27.57.111
= 26.57.222 chia hết cho 222
Vậy 109 + 108 +107 chia hết cho 222
Chúc bạn học tốt !