K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

Ta có : 109 + 108 + 10=  107. (102+10+1)

                                      = (2.5)7.111

                                      = 27.57.111

                                      = 26.57.222 chia hết cho 222

Vậy 109 + 108 +107 chia hết cho 222

Chúc bạn học tốt !

7 tháng 10 2024

d; 109 + 108 + 107 ⋮ 555

     109 + 108 + 107

  = 217 + 107

  = 324 < 555

  109 + 108 + 107 < 555 (không thể chia hết cho 555)

 

7 tháng 10 2024

e; 817 - 279 - 913 ⋮ 45

     817 - 279  -913 

    = 538 - 913 

    = - 375 

      3 + 7 + 5 = 15 không chia hết cho 9 n ên 375 không chia hết cho 45

20 tháng 2 2020

Đề sai rồi cậu ơi ! Không chứng minh được. 

Thế này nhé : Cậu xét số số hạng ủa S được 109 số

Xét 255 bằng 8 số hạng đầu tiên cộng lại ( Từ 2^0 đến 2^7). Nhưng 109 lại không chia hết cho 8 ( nếu chia ra thì dư 5) Nếu như đã dư thì chứng tỏ là sẽ không thể nhóm được thành từng nhóm số chia hết cho 255. Vì thế nên bài này không chia hết được cũng như là đề hơi sai sót :3 Cậu xem lại nhé

20 tháng 2 2020

nó không sai đề bài mà

28 tháng 3 2018

k cho mình mình sẽ giải ngay

28 tháng 4 2022

108,1:46=?

11 tháng 5 2018

A/B=1

11 tháng 5 2018

nghe là bt sai

21 tháng 9 2017

de ma

11 tháng 5 2018

kết quả của phép tính là

    => 1 

nên bài này bằng 1

11 tháng 5 2018

tại sao kết quả phép tính =1

6 tháng 1 2020

Ta có : M=2+22+23+...+2107+2108

               =(2+23+25)+(22+24+26)+...+(2104+2106+2108)

               =2(1+22+24)+22(1+22+24)+...+2104(1+22+24)

               =2.21+22.21+...+2104.21 chia hết cho 21

Vậy M chia hết cho 21.

6 tháng 1 2020

Ta có : M = 2 + 22 + 23 + 24  .... + 2107 + 2108

Ta có: 

A = \(\dfrac{10^7+5}{10^7-8}=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)

\(B=\dfrac{10^8+6}{10^8-7}=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)

Mà \(10^8-7>10^7-8\)

=> \(1+\dfrac{13}{10^7-8}>1+\dfrac{13}{10^8-7}\)

=> A < B 

Vậy A < B

Xin lỗi mình kết luận sai vì nhìn nhầm. Đáp án đúng là A > B và cả quá trình trên vẫn đúng nha.

20 tháng 3 2018

\(Ta\) \(có\) : \(222\equiv1\left(mod13\right)\) nên \(222^{333}\equiv1\left(mod13\right)\)

\(và\) \(333^2\equiv-1\left(mod13\right)\) nên \(333^{222}\equiv-1\left(mod13\right)\)

\(cộng\) \(lại\) \(ta\) \(có\) : \(222^{333}+333^{222}\equiv0\left(mod13\right)\) \(đpcm\)