a) Một hình vuông có cạnh bằng 3cm. Đường chéo của hình vuông đó bằng: 6cm, √18 cm, 5cm hay 4cm?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Gọi đường chéo của hình vuông có độ dài là a.
Áp dụng định lí Pi-ta-go ta có:
a2 = 32 + 32 = 18 suy ra a = √18 = 3√2
Vậy đường chéo của hình vuông đó bằng 3√2 (cm)
b)
Gọi cạnh của hình vuông là a.
Áp dụng định lí Pi-ta-go ta có:
a2 + a2 = 22 ⇒ 2a2 = 4
⇒ a2 = 2 ⇒ a = √2
Vậy cạnh của hình vuông đó bằng √2 (dm).
Bài giải:
a) Gọi đường chéo của hình vuông có độ dài là a.
Ta có: a2 = 32 + 32 = 18
Suy ra a = √18
Vậy đường chéo của hình vuông đó bằng 3√2.
b) Gọi cạnh của hình vuông là a.
Ta có a2 + a2 + 22 =>2 a2 = 4 => a2 = 2 => a = √2
Vậy cạnh của hình vuông đó bằng √2
Ta có: a2 = 32 + 32 = 18
Suy ra a = √1818
Vậy đường chéo của hình vuông đó bằng 3√22.
b) Gọi cạnh của hình vuông là a.
Ta có a2 + a2 + 22 =>2 a2 = 4 => a2 = 2 => a = √22
Vậy cạnh của hình vuông đó bằng √22.
a: Độ dài đường chéo là \(5\sqrt{2}\left(cm\right)\)
Diện tích của hình vuông: \(5\times5=25\left(dm^2\right)\)
Chiều dài đường chéo còn lại: \(25\times2:5=10\left(dm\right)\)
Giả sử các cạnh bên của hình chóp cắt nhau tại S.
Họi H và H lần lượt là tâm đường trong ngoại tiếp các hình vuông ABCD và A'B'C'D'
Thì S, H, H' thẳng hàng và AH, SH' lần lượt là các đường cao của các hình chóp S.ABCD và S.A'B'C'D'
Gọi P là trung điểm của BC, P' là trung điểm của B'C'
Ta có SP và SP' là các trung đoạn của các hình chóp đều S.ABCD và S.A'B'C'D'
Xét tam giác SHP vuông tại H nên \(SP=\sqrt{SH^2+HP^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
Vì B'C' vuông góc với BC và B'C'=1/2B'C' là đường trung bình của tam giác SBC
Do đó : \(SH'=\frac{1}{2}SH=2cm;SP'=\frac{1}{2}SP=2,5cm\)
Thể tích hình chóp S.ABCD là
\(V_1=\frac{1}{3}SH.BC^2=\frac{1}{3}.4.6^2=48cm^3\)
Thể tích hình chóp S.A'B'C'D' là
\(V_2=\frac{1}{3}SH'.A'B'^2=\frac{1}{3}.2.3^2=48-6=42cm^3\)
Thể tích của hình chóp cụt là : \(V=V_1-V_2=48-6=42cm^3\)
Diện tích xung quanh của hình chóp cụt là :
\(S_{xq}=AB^2+A'B'^2+4\frac{PP'\left(AB+A'B'\right)}{2}=6^2+3^2+4\frac{2,5\left(6+3\right)}{2}=90cm^2\)
Hai đường chéo AC, BD cắt nhau tại H. Trong tam giác vuông ABD, ta có:
Kẻ đường cao CK của tam giác ABC, dễ thấy KB = AB – DC = 6 - 8/3 = 10/3.
Tam giác vuông ABD có D B 2 = A B 2 + A D 2 = 6 2 + 4 2 = 52, từ đó DB = 52 = 2 13 (cm)
Gọi đường chéo của hình vuông có độ dài là a.
Áp dụng định lí Pi-ta-go ta có:
a2 = 32 + 32 = 18 suy ra a = √18
Vậy đáp án là √18 cm
Gọi 4 đỉnh của hình vuông là A,B,C,D.
Xét tam giác ABC có \(\widehat{B}\)=90o(ABCD là hình vuông)=> tam giác ABC vuông tại B
Theo định lí Pytago, ta có:
AC2=BD2=32+32=18
=>AC=BD=\(\sqrt{18}\)(cm)
=>đpcm
Hok tốt#