rút gọn biểu thức
( x+y+z+t )2 + ( x+y-z-t )2 + ( x+z-y-t )2 + ( x+t-y-z )2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(x+y-z)^2 +(x-y+z)^2 + 2[x^2-(y-z)^2]
= (x+y-z)^2 + 2(x-y+z)(x+y-z) + (x-y+z)^2
=(x+y-z+x-y+z)^2
= (2x)^2= 4x^2
(x-y+z)2 + (z-y)2 + 2(x-y+z)(y-z) = \(\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2=\left(x-y+z+y-z\right)^2=x^2\)
a,[x+y]^2.[x-y]^2=x4-2x2y2+y4
b,2.[x-y][x+y]+[x+y]^2+[x-y]^2=4x2
c,[x-y+z]^2+[z-y]^2+2.[x-y+z][y-z] (x - y + z)² + (z - y)² + 2(x - y + z)(y - z)
= (x - y + z)² + 2(x - y + z)(y - z) + (y - z)²
= (x - y + z + y - z)²
= x²
Câu c mk thấy khó nên viết luôn cách giải nha
a) \(\left(x+y\right)^2\cdot\left(x-y\right)^2=\left(x^2-y^2\right)^2\)
b) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
c) \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)=\left(x-y+z+y-z\right)^2=x^2\)
(Lấy y-z chứ không được lấy z-y)
Theo đề, ta có: \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{t}{x}\) \(=\dfrac{x+y+z+t}{y+z+t+x}=1\) .
\(\Rightarrow x=y;y=z;z=t;t=x\)
\(\Rightarrow x=y=z=t\)
\(M=\dfrac{2x-y}{z+t}+\dfrac{2y-z}{t+x}+\dfrac{2z-t}{x+y}+\dfrac{2t-x}{y-z}\)
\(M=\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}\)
\(M=\dfrac{1}{2}.4\)
\(M=2\)
Giải:
\(\left(x-y+z\right)^2+\left(z-y\right)^2+2.\left(x-y+z\right).\left(y-z\right)\)
\(=\left(x-y+z\right)^2+2.\left(x-y+z\right).\left(y-z\right)+\left(z-y\right)^2\)
\(=\left(x-y+z\right)^2+2.\left(x-y+z\right).\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(x-y+z+y-z\right)^2\)
\(=x^2\)
Vậy ...
dấu = thứ nhất vs dấu = thứ 2 của bn giống nhau nha (lặp đi lặp lại à)