Biện luận m số giao điểm
y=m và y = -|x|^2 +2|x| +3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoành độ Giao điểm chính là nghiệm của D=P vậy ta xem nó có bao nhiêu nghiệm
x^2=2x+m-3
(x-1)^2=m-4
Nếu m=4 => có một nghiệm x=1 có 1 giao điểm
nếu m<4 => không tồn tại x => không có giao điểm
m>4 => \(\orbr{\begin{cases}x=1-\sqrt{m-4}\\x=1+\sqrt{m-4}\end{cases}}\) => có 2 điểm
Xét pt: \(x^2-2mx+m^2-2m+3=0\) (1)
\(\Delta'=m^2-\left(m^2-2m+3\right)=2m-3\)
- Nếu \(2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\Rightarrow\left(1\right)\) vô nghiệm hay hàm xác định trên R
- Nếu \(2m-3=0\Leftrightarrow m=\dfrac{3}{2}\Rightarrow\left(1\right)\) có nghiệm kép \(x=\dfrac{3}{2}\) hay TXĐ của hàm: \(D=R\backslash\left\{\dfrac{3}{2}\right\}\)
- Nếu \(2m-3>0\Leftrightarrow m>\dfrac{3}{2}\Rightarrow\left(1\right)\) có 2 nghiệm pb \(x_{1,2}=m\pm\sqrt{2m-3}\) hay TXĐ của hàm là: \(D=R\backslash\left\{m-\sqrt{2m-3};m+\sqrt{2m-3}\right\}\)
Xét phương trình hoành độ giao điểm của \(C_1\) và \(C_2\)
\(x^3-4mx+2=3x^2-4m\left(1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-4m-2\right)=0\)
\(\Leftrightarrow x=1\) hoặc \(x^2-2x-4m-2=0\left(2\right)\)(\(\Delta'=4m+3\)
Số giao điểm của \(C_1\) và \(C_2\) bằng số nghiệm của phương trình (1). Do đó
* \(\Delta'< 0\Leftrightarrow m< -\frac{3}{4}:\left(2\right)\)vô nghiệm \(\Rightarrow\left(1\right)\) có nghiệm duy nhất (x = 1)
\(\Rightarrow\) \(C_1\) và \(C_2\) có một giao điểm
* \(\Delta'=0\Leftrightarrow m=-\frac{3}{4}:\left(2\right)\)trở thành \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\), trong trường hợp này, (1) cũng có nghiệm duy nhất (x = 1) \(\Rightarrow\) \(C_1\) và \(C_2\) có một giao điểm
* \(\Delta'>0\Leftrightarrow m>-\frac{3}{4}:\left(2\right)\) có 2 nghiệm phân biệt. Ta thấy \(t\left(1\right)=-4m-3\ne0\) với mọi \(m>-\frac{3}{4}\Rightarrow1\) không phải là nghiệm của (2) \(\Rightarrow\left(1\right)\) có 3 nghiệm phân biệt
\(\Rightarrow\) \(C_1\) và \(C_2\) có ba giao điểm
Kết luận :
- Với \(m\le-\frac{3}{4}\) \(C_1\) và \(C_2\) có một giao điểm
- Với \(m>-\frac{3}{4}\) \(C_1\) và \(C_2\) có 3 giao điểm
a
Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m}< >\dfrac{m}{2}\)
=>m^2<>2m-2
=>m^2-2m+2<>0(luôn đúng)
Để hệ có vô sô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}=\dfrac{m+1}{2}\)
=>2m=2m+2 và 2m-2=m^2+m
=>m^2+m-2m+2=0 và 0m=2(loại)
Để hệ vô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}< >\dfrac{m+1}{2}\)
=>m^2=2m-2 và 2m<>2m+2
=>0m<>2 và m^2-2m+2=0(loại)
b: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m+2}< >\dfrac{m-2}{m+1}\)
=>m^2+m<>m^2-4
=>m<>-4
Để hệ có vô số nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}=\dfrac{5}{2}\)
=>m^2+m=m^2-4 và 2m=5m+10
=>m=-4 và m=-10/3(loại)
Để hệ vô nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}< >\dfrac{5}{2}\)
=>m=-4 và m<>-10/3(nhận)
c: Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m+2}< >-\dfrac{2}{1}=-2\)
=>-2m-4<>m-1
=>-3m<>3
=>m<>-1
Để hệ vô nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)
=>2m+4=-m+1 và 2-2m<>-3m+1
=>3m=-3 và m<>-1
=>m=-1 và m<>-1(loại)
Để hệ có vô số nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)
=>m=-1