Tìm giá trị nhỏ nhất của biểu thức
\(B=2x^2+40x-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)
nên Dấu '=' xảy ra khi x-2=0
hay x=2
Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
=2xx+2x+6x+1
=2x(x+1)+6x+1=2x(x+1+3x)+1≥1
dấu = xảy ra khi 2x(x+1+3x)=0 còn lại bạn tự xử nhé :)
bài này mình ko chắc có đúng ko nên phải nghiên cứu trước rồi mới làm nha
b: Ta có: \(B=2x^2+8x+1\)
\(=2\left(x^2+4x+\dfrac{1}{2}\right)\)
\(=2\left(x^2+4x+4-\dfrac{7}{2}\right)\)
\(=2\left(x+2\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x=-2
a/ Để A nhỏ nhất thì |x-7| là nhỏ nhất
=> |x-7| = 0
Vậy GTNN của A là : 0-1= -1
\(a,A=4+\left|x-\frac{2}{5}\right|\)
Có \(\left|x-\frac{2}{5}\right|\ge0\)
\(\Rightarrow A\ge4+0=4\)
Dấu "=" xảy ra khi \(x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)
Vậy Min A = 4 \(\Leftrightarrow x=\frac{2}{5}\)
\(B=2x^2+40x-1\)
\(=2\left(x^2+20x-\frac{1}{2}\right)\)
\(=2\left(x^2+20x+100-\frac{201}{2}\right)\)
\(=2\left[\left(x+10\right)^2-\frac{201}{2}\right]\)
\(=2\left[\left(x+10\right)^2\right]-201\ge-201\)
Vậy \(B_{min}=-201\Leftrightarrow x+10=0\Leftrightarrow x=-10\)
\(B=2x^2+40x-1\)\(=2\left(x^2+2.10x+100\right)-201\)
\(=2\left(x+10\right)^2-201\)
Vì \(2\left(x+10\right)^2\ge0\forall x\)=>\(2\left(x+10\right)^2-201\ge-201\forall x\)
hay \(B\ge-201\forall x\)
\(MinB=-201\Leftrightarrow x+10=0\Leftrightarrow x=-10\)