K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2019

\(B=2x^2+40x-1\)

\(=2\left(x^2+20x-\frac{1}{2}\right)\)

\(=2\left(x^2+20x+100-\frac{201}{2}\right)\)

\(=2\left[\left(x+10\right)^2-\frac{201}{2}\right]\)

\(=2\left[\left(x+10\right)^2\right]-201\ge-201\)

Vậy \(B_{min}=-201\Leftrightarrow x+10=0\Leftrightarrow x=-10\)

29 tháng 10 2019

\(B=2x^2+40x-1\)\(=2\left(x^2+2.10x+100\right)-201\)

\(=2\left(x+10\right)^2-201\)

Vì \(2\left(x+10\right)^2\ge0\forall x\)=>\(2\left(x+10\right)^2-201\ge-201\forall x\)

hay \(B\ge-201\forall x\)

\(MinB=-201\Leftrightarrow x+10=0\Leftrightarrow x=-10\)

a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)

nên Dấu '=' xảy ra khi x-2=0

hay x=2

Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

12 tháng 7 2016
B= \(\frac{7}{4}\)

C= \(\frac{1}{2}\)

13 tháng 7 2016

bạn có thể nói rõ cách làm không

28 tháng 8 2021

=2xx+2x+6x+1

=2x(x+1)+6x+1=2x(x+1+3x)+1≥1

dấu = xảy ra khi 2x(x+1+3x)=0 còn lại bạn tự xử nhé :)

bài này mình ko chắc có đúng ko nên phải nghiên cứu trước  rồi mới làm nha

b: Ta có: \(B=2x^2+8x+1\)

\(=2\left(x^2+4x+\dfrac{1}{2}\right)\)

\(=2\left(x^2+4x+4-\dfrac{7}{2}\right)\)

\(=2\left(x+2\right)^2-7\ge-7\forall x\)

Dấu '=' xảy ra khi x=-2

a/ Để A nhỏ nhất thì |x-7| là nhỏ nhất

=> |x-7| = 0 

Vậy GTNN của A là : 0-1= -1 

12 tháng 7 2018

\(a,A=4+\left|x-\frac{2}{5}\right|\)

Có \(\left|x-\frac{2}{5}\right|\ge0\)

\(\Rightarrow A\ge4+0=4\)

Dấu "=" xảy ra khi \(x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)

Vậy Min A = 4 \(\Leftrightarrow x=\frac{2}{5}\)